具有抗菌活性的咖啡壳提取物(CHE)封端 Fe3O4/PU/ZnO 纳米复合材料的合成与表征

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS Biomass Conversion and Biorefinery Pub Date : 2024-07-10 DOI:10.1007/s13399-024-05918-2
Genet Tsegaye, Zebene Kiflie, Tizazu H. Mekonnen, Mulisa Jida
{"title":"具有抗菌活性的咖啡壳提取物(CHE)封端 Fe3O4/PU/ZnO 纳米复合材料的合成与表征","authors":"Genet Tsegaye, Zebene Kiflie, Tizazu H. Mekonnen, Mulisa Jida","doi":"10.1007/s13399-024-05918-2","DOIUrl":null,"url":null,"abstract":"<p>Waterborne diseases pose a significant threat to global health, particularly in developing nations mainly attributed to disease-carrying microbes. This study aims to synthesize plant-mediated nanocomposite material with antimicrobial activity that can have applications for domestic water treatment. The study employed phytochemicals extracted from coffee husk (CH) as a capping agent to synthesize a novel coffee husk extract-capped magnetic pumice zinc oxide nanocomposite (CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC) for antibacterial material applications. The study was carried out to examine the effects of coffee husk extract (CHE) on biosynthesized nanocomposite characteristics and to compare the antibacterial activity of CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NCs versus bare CHE-capped ZnO nanoparticles (ZnO-NPs). The biosynthesized CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC have high zeta potential (− 23.8 mV) proving that the synthesized nanocomposite material was more stable than bare ZnO-NPs (− 21 mv) as a colloidal dispersion. SEM was used to examine the shape and size of CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC particles and for comparison with bare ZnO-NPs. It was noted that the Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC has smaller particle size (11.2 nm) than ZnO-NPs (22.2 nm). The CHE Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC also demonstrated a better bacterial growth inhibition zone against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Escherichia coli</i> (<i>E. coli</i>) than pure CHE-capped ZnO-NPs. The CHE Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC exhibited more potent antimicrobial activity against <i>S. aureus</i> than against <i>E. coli.</i> This confirmed that the developed biosynthesized CHE-capped nanocomposite could be a promising candidate for pathogen disinfection.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of coffee husk extract (CHE)-capped Fe3O4/PU/ZnO nanocomposites with antimicrobial activity\",\"authors\":\"Genet Tsegaye, Zebene Kiflie, Tizazu H. Mekonnen, Mulisa Jida\",\"doi\":\"10.1007/s13399-024-05918-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Waterborne diseases pose a significant threat to global health, particularly in developing nations mainly attributed to disease-carrying microbes. This study aims to synthesize plant-mediated nanocomposite material with antimicrobial activity that can have applications for domestic water treatment. The study employed phytochemicals extracted from coffee husk (CH) as a capping agent to synthesize a novel coffee husk extract-capped magnetic pumice zinc oxide nanocomposite (CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC) for antibacterial material applications. The study was carried out to examine the effects of coffee husk extract (CHE) on biosynthesized nanocomposite characteristics and to compare the antibacterial activity of CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NCs versus bare CHE-capped ZnO nanoparticles (ZnO-NPs). The biosynthesized CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC have high zeta potential (− 23.8 mV) proving that the synthesized nanocomposite material was more stable than bare ZnO-NPs (− 21 mv) as a colloidal dispersion. SEM was used to examine the shape and size of CHE-capped Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC particles and for comparison with bare ZnO-NPs. It was noted that the Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC has smaller particle size (11.2 nm) than ZnO-NPs (22.2 nm). The CHE Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC also demonstrated a better bacterial growth inhibition zone against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Escherichia coli</i> (<i>E. coli</i>) than pure CHE-capped ZnO-NPs. The CHE Fe<sub>3</sub>O<sub>4</sub>/PU/ZnO-NC exhibited more potent antimicrobial activity against <i>S. aureus</i> than against <i>E. coli.</i> This confirmed that the developed biosynthesized CHE-capped nanocomposite could be a promising candidate for pathogen disinfection.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-05918-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-05918-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

水传播疾病对全球健康构成重大威胁,尤其是在发展中国家,主要原因是携带疾病的微生物。本研究旨在合成具有抗菌活性的植物介导纳米复合材料,该材料可应用于家庭水处理。研究采用从咖啡壳(CH)中提取的植物化学物质作为封端剂,合成了一种新型的咖啡壳提取物封端磁性浮石氧化锌纳米复合材料(CHE-封端 Fe3O4/PU/ZnO-NC),用于抗菌材料的应用。该研究旨在考察咖啡壳提取物(CHE)对生物合成纳米复合材料特性的影响,并比较CHE封端Fe3O4/PU/ZnO-NC与裸CHE封端氧化锌纳米颗粒(ZnO-NPs)的抗菌活性。生物合成的CHE封端Fe3O4/PU/ZnO-NC具有较高的zeta电位(- 23.8 mV),证明合成的纳米复合材料比裸ZnO-NPs(- 21 mv)作为胶体分散体更加稳定。扫描电镜用于检查 CHE 封装的 Fe3O4/PU/ZnO-NC 颗粒的形状和大小,并与裸 ZnO-NPs 进行比较。结果表明,Fe3O4/PU/ZnO-NC 的粒径(11.2 nm)小于 ZnO-NPs(22.2 nm)。CHE Fe3O4/PU/ZnO-NC 对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)的细菌生长抑制区也优于纯 CHE 封端 ZnO-NPs。CHE Fe3O4/PU/ZnO-NC 对金黄色葡萄球菌的抗菌活性强于对大肠杆菌的抗菌活性。这证实了所开发的生物合成 CHE-封端纳米复合材料有望成为病原体消毒的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of coffee husk extract (CHE)-capped Fe3O4/PU/ZnO nanocomposites with antimicrobial activity

Waterborne diseases pose a significant threat to global health, particularly in developing nations mainly attributed to disease-carrying microbes. This study aims to synthesize plant-mediated nanocomposite material with antimicrobial activity that can have applications for domestic water treatment. The study employed phytochemicals extracted from coffee husk (CH) as a capping agent to synthesize a novel coffee husk extract-capped magnetic pumice zinc oxide nanocomposite (CHE-capped Fe3O4/PU/ZnO-NC) for antibacterial material applications. The study was carried out to examine the effects of coffee husk extract (CHE) on biosynthesized nanocomposite characteristics and to compare the antibacterial activity of CHE-capped Fe3O4/PU/ZnO-NCs versus bare CHE-capped ZnO nanoparticles (ZnO-NPs). The biosynthesized CHE-capped Fe3O4/PU/ZnO-NC have high zeta potential (− 23.8 mV) proving that the synthesized nanocomposite material was more stable than bare ZnO-NPs (− 21 mv) as a colloidal dispersion. SEM was used to examine the shape and size of CHE-capped Fe3O4/PU/ZnO-NC particles and for comparison with bare ZnO-NPs. It was noted that the Fe3O4/PU/ZnO-NC has smaller particle size (11.2 nm) than ZnO-NPs (22.2 nm). The CHE Fe3O4/PU/ZnO-NC also demonstrated a better bacterial growth inhibition zone against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) than pure CHE-capped ZnO-NPs. The CHE Fe3O4/PU/ZnO-NC exhibited more potent antimicrobial activity against S. aureus than against E. coli. This confirmed that the developed biosynthesized CHE-capped nanocomposite could be a promising candidate for pathogen disinfection.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
期刊最新文献
Evaluation of mechanical, thermal, and flammability properties in biochar-infused polymer composites from bael fruit and cashew shells: a comparative study Thermal and hydrodynamic CFD evaluation of throat sizing effect on biomass gasification performance in downdraft fixed-bed reactor The performance analysis of supercapacitors utilizing chemically activated carbon derived from Chinese medicine residues Effect of reinforcing waste bagasse ash and eggshells as fillers on mechanical and viscoelastic characteristics of areca/epoxy hybrid composites Investigation of magnetite graphene oxide- impregnated activated carbon of Rumex abyssinicus stem for adsorption of Cr (VI) from tannery wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1