{"title":"概率地震灾害分析中的最小震级界限:结构工程学的启示","authors":"Alireza Azarbakht","doi":"10.1007/s10518-024-01972-3","DOIUrl":null,"url":null,"abstract":"<div><p>In order to systematically advance our understanding of the minimum magnitude limit (M<sub>min</sub>) in the probabilistic seismic hazard analysis (PSHA) calculations, a novel and useful approach utilising a broad range of Single-Degree-of-Freedom oscillators and hazard conditions is being developed and tested. We have determined the most reasonable M<sub>min</sub> value for a variety of structures by examining the impact of M<sub>min</sub> on the mean annual frequency (MAF) of various limit states (LSs) (including the collapse capacity). The originality of the suggested methodology in the current work, known as the MAF saturation strategy, is the recommended M<sub>min</sub>, which is the cut-off value at which lesser magnitude events do add to the hazard but do not significantly change the MAF. The current work is the first to offer the MAF saturation strategy methodology, which searches for the cut-off magnitude at which the MAF value essentially remains constant even when smaller values of this cut-off are utilised as M<sub>min</sub> for hazard assessments. Therefore, given a series of carefully chosen ground motions in each oscillator instance, an incremental dynamic analysis is carried out (by applying the Hunt and Fill algorithm), and the appropriate LS (including the collapse capacity defined as global instability) points are calculated. Thus, the relationship between the distribution of LSs and the Engineering Demand Parameter and intensity measure is found. A simple point source hazard curve is convoluted with this distribution, yielding the structure-specific MAF. In order to find the cut-off lower magnitude (M<sub>min</sub>), this convolution is repeated for several M<sub>min</sub> values. This cut-off is defined as the point at which, when lower values are utilised as M<sub>min</sub> in the PSHA computation, the MAF’s values do not change considerably (with a five per cent threshold). The acquired data were thoroughly discussed in relation to various structural features and seismic input factors. The primary findings showed that each of the structures under consideration requires a M<sub>min</sub> value in the range of 4–4.3. Put otherwise, the suggestions seen in technical literature, which range from 4.5 to 5, are not cautious, at least not when it comes to probabilistic structural limit state frequency. The derived M<sub>min</sub> value is mostly controlled by the natural period of the structure and is largely unaffected by other structural characteristics like ductility, damping ratio and overstrength factor.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 10","pages":"5299 - 5320"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01972-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimum magnitude boundaries in probabilistic seismic hazard analysis: an insight from structural engineering\",\"authors\":\"Alireza Azarbakht\",\"doi\":\"10.1007/s10518-024-01972-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to systematically advance our understanding of the minimum magnitude limit (M<sub>min</sub>) in the probabilistic seismic hazard analysis (PSHA) calculations, a novel and useful approach utilising a broad range of Single-Degree-of-Freedom oscillators and hazard conditions is being developed and tested. We have determined the most reasonable M<sub>min</sub> value for a variety of structures by examining the impact of M<sub>min</sub> on the mean annual frequency (MAF) of various limit states (LSs) (including the collapse capacity). The originality of the suggested methodology in the current work, known as the MAF saturation strategy, is the recommended M<sub>min</sub>, which is the cut-off value at which lesser magnitude events do add to the hazard but do not significantly change the MAF. The current work is the first to offer the MAF saturation strategy methodology, which searches for the cut-off magnitude at which the MAF value essentially remains constant even when smaller values of this cut-off are utilised as M<sub>min</sub> for hazard assessments. Therefore, given a series of carefully chosen ground motions in each oscillator instance, an incremental dynamic analysis is carried out (by applying the Hunt and Fill algorithm), and the appropriate LS (including the collapse capacity defined as global instability) points are calculated. Thus, the relationship between the distribution of LSs and the Engineering Demand Parameter and intensity measure is found. A simple point source hazard curve is convoluted with this distribution, yielding the structure-specific MAF. In order to find the cut-off lower magnitude (M<sub>min</sub>), this convolution is repeated for several M<sub>min</sub> values. This cut-off is defined as the point at which, when lower values are utilised as M<sub>min</sub> in the PSHA computation, the MAF’s values do not change considerably (with a five per cent threshold). The acquired data were thoroughly discussed in relation to various structural features and seismic input factors. The primary findings showed that each of the structures under consideration requires a M<sub>min</sub> value in the range of 4–4.3. Put otherwise, the suggestions seen in technical literature, which range from 4.5 to 5, are not cautious, at least not when it comes to probabilistic structural limit state frequency. The derived M<sub>min</sub> value is mostly controlled by the natural period of the structure and is largely unaffected by other structural characteristics like ductility, damping ratio and overstrength factor.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 10\",\"pages\":\"5299 - 5320\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-01972-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01972-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01972-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Minimum magnitude boundaries in probabilistic seismic hazard analysis: an insight from structural engineering
In order to systematically advance our understanding of the minimum magnitude limit (Mmin) in the probabilistic seismic hazard analysis (PSHA) calculations, a novel and useful approach utilising a broad range of Single-Degree-of-Freedom oscillators and hazard conditions is being developed and tested. We have determined the most reasonable Mmin value for a variety of structures by examining the impact of Mmin on the mean annual frequency (MAF) of various limit states (LSs) (including the collapse capacity). The originality of the suggested methodology in the current work, known as the MAF saturation strategy, is the recommended Mmin, which is the cut-off value at which lesser magnitude events do add to the hazard but do not significantly change the MAF. The current work is the first to offer the MAF saturation strategy methodology, which searches for the cut-off magnitude at which the MAF value essentially remains constant even when smaller values of this cut-off are utilised as Mmin for hazard assessments. Therefore, given a series of carefully chosen ground motions in each oscillator instance, an incremental dynamic analysis is carried out (by applying the Hunt and Fill algorithm), and the appropriate LS (including the collapse capacity defined as global instability) points are calculated. Thus, the relationship between the distribution of LSs and the Engineering Demand Parameter and intensity measure is found. A simple point source hazard curve is convoluted with this distribution, yielding the structure-specific MAF. In order to find the cut-off lower magnitude (Mmin), this convolution is repeated for several Mmin values. This cut-off is defined as the point at which, when lower values are utilised as Mmin in the PSHA computation, the MAF’s values do not change considerably (with a five per cent threshold). The acquired data were thoroughly discussed in relation to various structural features and seismic input factors. The primary findings showed that each of the structures under consideration requires a Mmin value in the range of 4–4.3. Put otherwise, the suggestions seen in technical literature, which range from 4.5 to 5, are not cautious, at least not when it comes to probabilistic structural limit state frequency. The derived Mmin value is mostly controlled by the natural period of the structure and is largely unaffected by other structural characteristics like ductility, damping ratio and overstrength factor.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.