基于机器学习的心脏康复患者疗效预测模型:系统性综述

Xiarepati Tieliwaerdi, Kathryn Manalo, Sana Khan, Edmund Appiahkubi, Andrew Oehler
{"title":"基于机器学习的心脏康复患者疗效预测模型:系统性综述","authors":"Xiarepati Tieliwaerdi, Kathryn Manalo, Sana Khan, Edmund Appiahkubi, Andrew Oehler","doi":"10.1101/2024.07.09.24310007","DOIUrl":null,"url":null,"abstract":"Purpose: CR has been proven to reduce mortality and morbidity in patients with CVD. ML techniques are increasingly used to predict healthcare outcomes in various fields of medicine including CR. This systemic review aims to perform critical appraisal of existing ML based prognosis predictive model within CR and identify key research gaps in this area. Review methods: A systematic literature search was conducted in Scopus, PubMed, Web of Science and Google Scholar from the inception of each database to 28th January 2024. The data extracted included clinical features, predicted outcomes, model development and validation as well as model performance metrics. Included studies underwent quality assessments using the IJMEDI.\nSummary: 22 ML-based clinical models from 7 studies across multiple phases of CR were included. Most models were developed using smaller patient cohorts from 41 to 227, with one exception involving 2280 patients. The prediction objectives ranged from patient intention to initiate CR to graduate from outpatient CR along with interval physiological and psychological response to CR. The best-performing ML models reported AUC between 0.82 and 0.91, sensitivity from 0.77 to 0.95, indicating good prediction capabilities. However, none of them underwent calibration or external validation. Most studies raised concerns for bias. Readiness of these models for implement into practice is questionable. External validation of existing models and development of new models with robust methodology based on larger populations and targeting diverse clinical overcomes in CR are needed.","PeriodicalId":501297,"journal":{"name":"medRxiv - Cardiovascular Medicine","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning based Prediction Models for Healthcare Outcomes in Patients Participating in Cardiac Rehabilitation: A Systematic Review\",\"authors\":\"Xiarepati Tieliwaerdi, Kathryn Manalo, Sana Khan, Edmund Appiahkubi, Andrew Oehler\",\"doi\":\"10.1101/2024.07.09.24310007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: CR has been proven to reduce mortality and morbidity in patients with CVD. ML techniques are increasingly used to predict healthcare outcomes in various fields of medicine including CR. This systemic review aims to perform critical appraisal of existing ML based prognosis predictive model within CR and identify key research gaps in this area. Review methods: A systematic literature search was conducted in Scopus, PubMed, Web of Science and Google Scholar from the inception of each database to 28th January 2024. The data extracted included clinical features, predicted outcomes, model development and validation as well as model performance metrics. Included studies underwent quality assessments using the IJMEDI.\\nSummary: 22 ML-based clinical models from 7 studies across multiple phases of CR were included. Most models were developed using smaller patient cohorts from 41 to 227, with one exception involving 2280 patients. The prediction objectives ranged from patient intention to initiate CR to graduate from outpatient CR along with interval physiological and psychological response to CR. The best-performing ML models reported AUC between 0.82 and 0.91, sensitivity from 0.77 to 0.95, indicating good prediction capabilities. However, none of them underwent calibration or external validation. Most studies raised concerns for bias. Readiness of these models for implement into practice is questionable. External validation of existing models and development of new models with robust methodology based on larger populations and targeting diverse clinical overcomes in CR are needed.\",\"PeriodicalId\":501297,\"journal\":{\"name\":\"medRxiv - Cardiovascular Medicine\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Cardiovascular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.09.24310007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.09.24310007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:事实证明,CR 可以降低心血管疾病患者的死亡率和发病率。包括 CR 在内的各个医学领域越来越多地使用 ML 技术来预测医疗结果。本系统综述旨在对 CR 中现有的基于 ML 的预后预测模型进行批判性评估,并找出该领域的主要研究空白。综述方法:在 Scopus、PubMed、Web of Science 和 Google Scholar 上进行了系统的文献检索,检索时间从各数据库建立之初至 2024 年 1 月 28 日。提取的数据包括临床特征、预测结果、模型开发和验证以及模型性能指标。摘要:共纳入了 7 项研究中的 22 个基于 ML 的临床模型,涉及 CR 的多个阶段。大多数模型都是使用较小的患者群(41 到 227 人)开发的,只有一个例外涉及 2280 名患者。预测目标从患者启动 CR 的意向到从门诊 CR 毕业,以及对 CR 的间歇性生理和心理反应不等。表现最好的 ML 模型的 AUC 在 0.82 到 0.91 之间,灵敏度在 0.77 到 0.95 之间,显示了良好的预测能力。但是,这些模型都没有经过校准或外部验证。大多数研究都提出了偏差问题。这些模型是否可用于实践值得怀疑。有必要对现有模型进行外部验证,并针对 CR 的不同临床结果,以更大的人群为基础,用可靠的方法开发新的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine-Learning based Prediction Models for Healthcare Outcomes in Patients Participating in Cardiac Rehabilitation: A Systematic Review
Purpose: CR has been proven to reduce mortality and morbidity in patients with CVD. ML techniques are increasingly used to predict healthcare outcomes in various fields of medicine including CR. This systemic review aims to perform critical appraisal of existing ML based prognosis predictive model within CR and identify key research gaps in this area. Review methods: A systematic literature search was conducted in Scopus, PubMed, Web of Science and Google Scholar from the inception of each database to 28th January 2024. The data extracted included clinical features, predicted outcomes, model development and validation as well as model performance metrics. Included studies underwent quality assessments using the IJMEDI. Summary: 22 ML-based clinical models from 7 studies across multiple phases of CR were included. Most models were developed using smaller patient cohorts from 41 to 227, with one exception involving 2280 patients. The prediction objectives ranged from patient intention to initiate CR to graduate from outpatient CR along with interval physiological and psychological response to CR. The best-performing ML models reported AUC between 0.82 and 0.91, sensitivity from 0.77 to 0.95, indicating good prediction capabilities. However, none of them underwent calibration or external validation. Most studies raised concerns for bias. Readiness of these models for implement into practice is questionable. External validation of existing models and development of new models with robust methodology based on larger populations and targeting diverse clinical overcomes in CR are needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Where Adults with Heart Failure Die: Insights from the CDC-WONDER Database A longitudinal study of depressive symptom trajectories and risk factors in congestive heart failure Right Ventricular Work and Pulmonary Capillary Wedge Pressure in Heart Failure with Preserved Ejection Fraction Association Between Life's Essential 8 and Atherogenic Index of Plasma in Adults: Insights from NHANES 2007-2018 Efficacy and Safety of Nicorandil for Prevention of Contrast-Induced Nephropathy in Patients Undergoing Coronary Procedures: A Systematic Review and Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1