Buddhadeb Mondal, Krishnendu Barman, Bijoy S Mazumder
{"title":"边界吸收条件下具有风效应的湿地流环境扩散","authors":"Buddhadeb Mondal, Krishnendu Barman, Bijoy S Mazumder","doi":"10.1007/s12040-024-02332-0","DOIUrl":null,"url":null,"abstract":"<p>Wetlands are characterized by flow and environmental dispersion, which are necessary in the water management system. Contaminant transport in wetlands has a significant effect in the field of biology and environmental fluid dynamics for the conservation of fish and wildlife species, erosion prevention, and mainly recreation. When an instantaneous contaminant is released into a wetland, both boundary absorptions and wind have a significant impact on the contaminant dispersion process. The present study highlights the wind effects and boundary absorption on environmental dispersion and stream-wise mean concentration in a width-dominated flow for a shallow wetland. A multi-scale time period is considered to determine the dispersion model, which illustrates the contaminant transport process greatly affected by different ecological parameters like dispersion time, boundary absorption, tortuosity and vegetation drag. It is noted that the stream-wise concentration distribution is almost identical to the transversal concentration distribution due to tortuosity and bottom vegetation effect. It is noticed that the stream-wise concentration of contaminant gradually decreases due to the increase of vegetation parameters and tortuosity. The distribution of flow velocity is derived analytically from the momentum equation for different wind strengths. The effect of boundary absorption strength on stream-wise and mean concentration are discussed. Also, it is evident that the distribution of concentration is complex for boundary absorption under the effects of wind.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental dispersion in wetland flow with wind effects under boundary absorptions\",\"authors\":\"Buddhadeb Mondal, Krishnendu Barman, Bijoy S Mazumder\",\"doi\":\"10.1007/s12040-024-02332-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wetlands are characterized by flow and environmental dispersion, which are necessary in the water management system. Contaminant transport in wetlands has a significant effect in the field of biology and environmental fluid dynamics for the conservation of fish and wildlife species, erosion prevention, and mainly recreation. When an instantaneous contaminant is released into a wetland, both boundary absorptions and wind have a significant impact on the contaminant dispersion process. The present study highlights the wind effects and boundary absorption on environmental dispersion and stream-wise mean concentration in a width-dominated flow for a shallow wetland. A multi-scale time period is considered to determine the dispersion model, which illustrates the contaminant transport process greatly affected by different ecological parameters like dispersion time, boundary absorption, tortuosity and vegetation drag. It is noted that the stream-wise concentration distribution is almost identical to the transversal concentration distribution due to tortuosity and bottom vegetation effect. It is noticed that the stream-wise concentration of contaminant gradually decreases due to the increase of vegetation parameters and tortuosity. The distribution of flow velocity is derived analytically from the momentum equation for different wind strengths. The effect of boundary absorption strength on stream-wise and mean concentration are discussed. Also, it is evident that the distribution of concentration is complex for boundary absorption under the effects of wind.</p>\",\"PeriodicalId\":15609,\"journal\":{\"name\":\"Journal of Earth System Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth System Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12040-024-02332-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02332-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Environmental dispersion in wetland flow with wind effects under boundary absorptions
Wetlands are characterized by flow and environmental dispersion, which are necessary in the water management system. Contaminant transport in wetlands has a significant effect in the field of biology and environmental fluid dynamics for the conservation of fish and wildlife species, erosion prevention, and mainly recreation. When an instantaneous contaminant is released into a wetland, both boundary absorptions and wind have a significant impact on the contaminant dispersion process. The present study highlights the wind effects and boundary absorption on environmental dispersion and stream-wise mean concentration in a width-dominated flow for a shallow wetland. A multi-scale time period is considered to determine the dispersion model, which illustrates the contaminant transport process greatly affected by different ecological parameters like dispersion time, boundary absorption, tortuosity and vegetation drag. It is noted that the stream-wise concentration distribution is almost identical to the transversal concentration distribution due to tortuosity and bottom vegetation effect. It is noticed that the stream-wise concentration of contaminant gradually decreases due to the increase of vegetation parameters and tortuosity. The distribution of flow velocity is derived analytically from the momentum equation for different wind strengths. The effect of boundary absorption strength on stream-wise and mean concentration are discussed. Also, it is evident that the distribution of concentration is complex for boundary absorption under the effects of wind.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.