{"title":"机器学习建模在污水处理厂能源和排放优化方面的进展:系统回顾","authors":"Taher Abunama, Antoine Dellieu, Stéphane Nonet","doi":"10.1111/wej.12945","DOIUrl":null,"url":null,"abstract":"Wastewater treatment plants (WWTPs) are high‐energy consumers and major Greenhouse Gas (GHG) emitters. This review offers a comprehensive global overview of the current utilization of machine learning (ML) to optimize energy usage and reduce emissions in WWTPs. It compiles and analyses findings from over a hundred studies primarily conducted within the last decade. These studies are organized into five primary areas: energy consumption (EC), aeration energy (AE), pumping energy (PE), sludge treatment energy (STE) and greenhouse gas (GHG). Additionally, they are further categorized based on learning type, the scale of application, geographic location, year, performance metrics, software, etc. ANNs emerged as the most prevalent, closely trailed by FL and RF. While GA and PSO are the predominant metaheuristic approaches. Despite increasing complexity, researchers are inclined towards employing hybrid models to enhance performance. Reported reductions in energy consumption or GHG emissions spanned various ranges, falling within the 0–10%, 10–20% and >20% brackets.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"21 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in machine learning modelling for energy and emissions optimization in wastewater treatment plants: A systematic review\",\"authors\":\"Taher Abunama, Antoine Dellieu, Stéphane Nonet\",\"doi\":\"10.1111/wej.12945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wastewater treatment plants (WWTPs) are high‐energy consumers and major Greenhouse Gas (GHG) emitters. This review offers a comprehensive global overview of the current utilization of machine learning (ML) to optimize energy usage and reduce emissions in WWTPs. It compiles and analyses findings from over a hundred studies primarily conducted within the last decade. These studies are organized into five primary areas: energy consumption (EC), aeration energy (AE), pumping energy (PE), sludge treatment energy (STE) and greenhouse gas (GHG). Additionally, they are further categorized based on learning type, the scale of application, geographic location, year, performance metrics, software, etc. ANNs emerged as the most prevalent, closely trailed by FL and RF. While GA and PSO are the predominant metaheuristic approaches. Despite increasing complexity, researchers are inclined towards employing hybrid models to enhance performance. Reported reductions in energy consumption or GHG emissions spanned various ranges, falling within the 0–10%, 10–20% and >20% brackets.\",\"PeriodicalId\":23753,\"journal\":{\"name\":\"Water and Environment Journal\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water and Environment Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/wej.12945\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12945","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Advancements in machine learning modelling for energy and emissions optimization in wastewater treatment plants: A systematic review
Wastewater treatment plants (WWTPs) are high‐energy consumers and major Greenhouse Gas (GHG) emitters. This review offers a comprehensive global overview of the current utilization of machine learning (ML) to optimize energy usage and reduce emissions in WWTPs. It compiles and analyses findings from over a hundred studies primarily conducted within the last decade. These studies are organized into five primary areas: energy consumption (EC), aeration energy (AE), pumping energy (PE), sludge treatment energy (STE) and greenhouse gas (GHG). Additionally, they are further categorized based on learning type, the scale of application, geographic location, year, performance metrics, software, etc. ANNs emerged as the most prevalent, closely trailed by FL and RF. While GA and PSO are the predominant metaheuristic approaches. Despite increasing complexity, researchers are inclined towards employing hybrid models to enhance performance. Reported reductions in energy consumption or GHG emissions spanned various ranges, falling within the 0–10%, 10–20% and >20% brackets.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure