Hyperion - 用于连续时间 SLAM 的快速、多用途符号高斯信念传播框架

David Hug, Ignacio Alzugaray, Margarita Chli
{"title":"Hyperion - 用于连续时间 SLAM 的快速、多用途符号高斯信念传播框架","authors":"David Hug, Ignacio Alzugaray, Margarita Chli","doi":"arxiv-2407.07074","DOIUrl":null,"url":null,"abstract":"Continuous-Time Simultaneous Localization And Mapping (CTSLAM) has become a\npromising approach for fusing asynchronous and multi-modal sensor suites.\nUnlike discrete-time SLAM, which estimates poses discretely, CTSLAM uses\ncontinuous-time motion parametrizations, facilitating the integration of a\nvariety of sensors such as rolling-shutter cameras, event cameras and Inertial\nMeasurement Units (IMUs). However, CTSLAM approaches remain computationally\ndemanding and are conventionally posed as centralized Non-Linear Least Squares\n(NLLS) optimizations. Targeting these limitations, we not only present the\nfastest SymForce-based [Martiros et al., RSS 2022] B- and Z-Spline\nimplementations achieving speedups between 2.43x and 110.31x over Sommer et al.\n[CVPR 2020] but also implement a novel continuous-time Gaussian Belief\nPropagation (GBP) framework, coined Hyperion, which targets decentralized\nprobabilistic inference across agents. We demonstrate the efficacy of our\nmethod in motion tracking and localization settings, complemented by empirical\nablation studies.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperion - A fast, versatile symbolic Gaussian Belief Propagation framework for Continuous-Time SLAM\",\"authors\":\"David Hug, Ignacio Alzugaray, Margarita Chli\",\"doi\":\"arxiv-2407.07074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous-Time Simultaneous Localization And Mapping (CTSLAM) has become a\\npromising approach for fusing asynchronous and multi-modal sensor suites.\\nUnlike discrete-time SLAM, which estimates poses discretely, CTSLAM uses\\ncontinuous-time motion parametrizations, facilitating the integration of a\\nvariety of sensors such as rolling-shutter cameras, event cameras and Inertial\\nMeasurement Units (IMUs). However, CTSLAM approaches remain computationally\\ndemanding and are conventionally posed as centralized Non-Linear Least Squares\\n(NLLS) optimizations. Targeting these limitations, we not only present the\\nfastest SymForce-based [Martiros et al., RSS 2022] B- and Z-Spline\\nimplementations achieving speedups between 2.43x and 110.31x over Sommer et al.\\n[CVPR 2020] but also implement a novel continuous-time Gaussian Belief\\nPropagation (GBP) framework, coined Hyperion, which targets decentralized\\nprobabilistic inference across agents. We demonstrate the efficacy of our\\nmethod in motion tracking and localization settings, complemented by empirical\\nablation studies.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续时间同步定位与绘图(Continuous-Time Simultaneous Localization And Mapping,CTSLAM)已成为融合异步和多模式传感器套件的重要方法。与离散时间 SLAM 不同,CTSLAM 采用连续时间运动参数化,便于整合各种传感器,如卷帘快门相机、事件相机和惯性测量单元(InertialMeasurement Units,IMUs)。然而,CTSLAM 方法仍然对计算要求很高,传统上都是采用集中式非线性最小二乘法(NLLS)进行优化。针对这些局限性,我们不仅提出了基于 SymForce 的最快[Martiros 等人,RSS 2022]B-和 Z-样条曲线实现方法,速度比 Sommer 等人[CVPR 2020]提高了 2.43 倍和 110.31 倍,而且还实现了一种新颖的连续时间高斯信念传播(GBP)框架,被称为 Hyperion,其目标是跨代理的分散式概率推理。我们展示了我们的方法在运动跟踪和定位设置中的功效,并辅以实证实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperion - A fast, versatile symbolic Gaussian Belief Propagation framework for Continuous-Time SLAM
Continuous-Time Simultaneous Localization And Mapping (CTSLAM) has become a promising approach for fusing asynchronous and multi-modal sensor suites. Unlike discrete-time SLAM, which estimates poses discretely, CTSLAM uses continuous-time motion parametrizations, facilitating the integration of a variety of sensors such as rolling-shutter cameras, event cameras and Inertial Measurement Units (IMUs). However, CTSLAM approaches remain computationally demanding and are conventionally posed as centralized Non-Linear Least Squares (NLLS) optimizations. Targeting these limitations, we not only present the fastest SymForce-based [Martiros et al., RSS 2022] B- and Z-Spline implementations achieving speedups between 2.43x and 110.31x over Sommer et al. [CVPR 2020] but also implement a novel continuous-time Gaussian Belief Propagation (GBP) framework, coined Hyperion, which targets decentralized probabilistic inference across agents. We demonstrate the efficacy of our method in motion tracking and localization settings, complemented by empirical ablation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1