对使用生物柴油的柴油发动机中扩展相干火焰模型 3 区(ECFM-3Z)的燃烧特性进行数值研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-08 DOI:10.1002/ep.14422
Şeyma Karahan Özbilen, Emrullah Hakan Kaleli, Emir Aydar
{"title":"对使用生物柴油的柴油发动机中扩展相干火焰模型 3 区(ECFM-3Z)的燃烧特性进行数值研究","authors":"Şeyma Karahan Özbilen,&nbsp;Emrullah Hakan Kaleli,&nbsp;Emir Aydar","doi":"10.1002/ep.14422","DOIUrl":null,"url":null,"abstract":"<p>This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C<sub>19</sub>H<sub>36</sub>O<sub>2</sub>) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO<sub>2</sub>) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NO<sub>x</sub>) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O<sub>2</sub>) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of combustion characteristics of extended coherent flame model 3 zones (ECFM-3Z) in diesel engines running with biodiesel\",\"authors\":\"Şeyma Karahan Özbilen,&nbsp;Emrullah Hakan Kaleli,&nbsp;Emir Aydar\",\"doi\":\"10.1002/ep.14422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C<sub>19</sub>H<sub>36</sub>O<sub>2</sub>) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO<sub>2</sub>) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NO<sub>x</sub>) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O<sub>2</sub>) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了扩展相干火焰模型-3 区(ECFM-3Z)在评估菜籽油甲酯(ROME)的性能和排放方面的应用。实验测试使用了一台 Lombardini 3 LD 350 型单缸柴油发动机,在满负荷条件下,转速为 1600-3000 rpm,增量为 200 rpm。数值分析采用了 STAR-CD/ESICE 软件。根据气相色谱(GC)分析和平均质量计算,预测油酸甲酯(C19H36O2)为代用生物柴油。值得注意的是,数值分析表明,实验和计算研究的制动功率非常相似。在 2400-3000 rpm 的转速范围内,生物柴油的性能表现出 5% 的最大偏差,这主要归因于泵送、热和摩擦损失。在排放方面,二氧化碳(CO2)排放与实验研究结果一致,最大偏差为 10%。不过,一氧化碳(CO)排放量比实验研究结果低 57% 至 65%,而氮氧化物(NOx)排放量则减少了 63% 至 84%。相比之下,氧气(O2)排放量明显增加,与实验研究相比增加了 93% 至 117%,排气温度也比实验结果高出 33% 至 49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of combustion characteristics of extended coherent flame model 3 zones (ECFM-3Z) in diesel engines running with biodiesel

This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C19H36O2) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO2) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NOx) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O2) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1