用粉末冶金法制造用于气体动力喷涂的多重强化粉末

IF 0.8 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Metallurgist Pub Date : 2024-07-08 DOI:10.1007/s11015-024-01745-y
A. V. Aborkin, D. M. Babin, D. V. Bokaryov, I. A. Evdokimov, M. I. Alymov
{"title":"用粉末冶金法制造用于气体动力喷涂的多重强化粉末","authors":"A. V. Aborkin, D. M. Babin, D. V. Bokaryov, I. A. Evdokimov, M. I. Alymov","doi":"10.1007/s11015-024-01745-y","DOIUrl":null,"url":null,"abstract":"<p>Mechanical synthesis of the powders based on the Al-6Mg nanocrystalline matrix, multi-reinforced with fullerenes (C<sub>60</sub>) and ceramic particles (AlN), was performed. The effect of the AlN content in the charge, ranging from 10 to 50 wt. %, on the morphology of particles, and the granulometric composition of the synthesized multi-reinforced powders were studied. The structural and phase composition of the synthesized powders was analyzed. The microhardness of the multi-reinforced composite powder particles was measured using kinetic indentation. It was shown that by increasing the concentration of ceramic filler (AlN) from 10 to 50 wt. %, it becomes possible to increase the microhardness of the powder particles by about 12–20% compared with the mono-reinforced composite particles.</p>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of multi-reinforced powders for gas-dynamic spraying by powder metallurgy\",\"authors\":\"A. V. Aborkin, D. M. Babin, D. V. Bokaryov, I. A. Evdokimov, M. I. Alymov\",\"doi\":\"10.1007/s11015-024-01745-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mechanical synthesis of the powders based on the Al-6Mg nanocrystalline matrix, multi-reinforced with fullerenes (C<sub>60</sub>) and ceramic particles (AlN), was performed. The effect of the AlN content in the charge, ranging from 10 to 50 wt. %, on the morphology of particles, and the granulometric composition of the synthesized multi-reinforced powders were studied. The structural and phase composition of the synthesized powders was analyzed. The microhardness of the multi-reinforced composite powder particles was measured using kinetic indentation. It was shown that by increasing the concentration of ceramic filler (AlN) from 10 to 50 wt. %, it becomes possible to increase the microhardness of the powder particles by about 12–20% compared with the mono-reinforced composite particles.</p>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11015-024-01745-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11015-024-01745-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

以 Al-6Mg 纳米晶基体为基础,用富勒烯(C60)和陶瓷颗粒(AlN)进行多重增强,对粉末进行了机械合成。研究了电荷中 AlN 含量(10 至 50 wt.%)对颗粒形态的影响,以及合成的多重增强粉末的粒度组成。分析了合成粉末的结构和相组成。使用动力学压痕法测量了多重增强复合粉末颗粒的显微硬度。结果表明,将陶瓷填料(AlN)的浓度从 10 wt. % 增加到 50 wt. %,粉末颗粒的显微硬度可比单增强复合材料颗粒提高约 12-20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of multi-reinforced powders for gas-dynamic spraying by powder metallurgy

Mechanical synthesis of the powders based on the Al-6Mg nanocrystalline matrix, multi-reinforced with fullerenes (C60) and ceramic particles (AlN), was performed. The effect of the AlN content in the charge, ranging from 10 to 50 wt. %, on the morphology of particles, and the granulometric composition of the synthesized multi-reinforced powders were studied. The structural and phase composition of the synthesized powders was analyzed. The microhardness of the multi-reinforced composite powder particles was measured using kinetic indentation. It was shown that by increasing the concentration of ceramic filler (AlN) from 10 to 50 wt. %, it becomes possible to increase the microhardness of the powder particles by about 12–20% compared with the mono-reinforced composite particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgist
Metallurgist 工程技术-冶金工程
CiteScore
1.50
自引率
44.40%
发文量
151
审稿时长
4-8 weeks
期刊介绍: Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956. Basic topics covered include: State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining; Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment; Automation and control; Protection of labor; Protection of the environment; Resources and energy saving; Quality and certification; History of metallurgy; Inventions (patents).
期刊最新文献
Analysis of the effect of comprehensive treatment, including aerothermoacoustic, on the mechanical properties of BrB2 alloy Potential of controlling the steel-making process in electric arc steel-making furnaces to optimize technical and economic performance Technical solutions to improve operating conditions of Vanukov furnace while processing technogenic raw materials Full-scale simulation of mechanized feeding of filler sand to the ladle slide-gate nozzle Study of the agglomerate crushing process and industrial development of an advanced rotary crusher
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1