使用不含重稀土的 La(Fe,Si)13-基化合物进行多极低温冷却。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-07-24 Epub Date: 2024-07-11 DOI:10.1021/acsami.4c05397
Benedikt Beckmann, Lukas Pfeuffer, Johanna Lill, Benedikt Eggert, David Koch, Barbara Lavina, Jiyong Zhao, Thomas Toellner, Esen E Alp, Katharina Ollefs, Konstantin P Skokov, Heiko Wende, Oliver Gutfleisch
{"title":"使用不含重稀土的 La(Fe,Si)13-基化合物进行多极低温冷却。","authors":"Benedikt Beckmann, Lukas Pfeuffer, Johanna Lill, Benedikt Eggert, David Koch, Barbara Lavina, Jiyong Zhao, Thomas Toellner, Esen E Alp, Katharina Ollefs, Konstantin P Skokov, Heiko Wende, Oliver Gutfleisch","doi":"10.1021/acsami.4c05397","DOIUrl":null,"url":null,"abstract":"<p><p>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La<sub>0.7</sub>Ce<sub>0.3</sub>Fe<sub>11.6</sub>Si<sub>1.4</sub> is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to -28 J (kg K)<sup>-1</sup> in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)<sub>13</sub>-Based Compounds.\",\"authors\":\"Benedikt Beckmann, Lukas Pfeuffer, Johanna Lill, Benedikt Eggert, David Koch, Barbara Lavina, Jiyong Zhao, Thomas Toellner, Esen E Alp, Katharina Ollefs, Konstantin P Skokov, Heiko Wende, Oliver Gutfleisch\",\"doi\":\"10.1021/acsami.4c05397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La<sub>0.7</sub>Ce<sub>0.3</sub>Fe<sub>11.6</sub>Si<sub>1.4</sub> is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to -28 J (kg K)<sup>-1</sup> in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c05397\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c05397","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

向以可再生能源为基础的碳中和社会过渡与节能技术的可用性密不可分。磁致冷是一种非常有前途的制冷技术,可以在低温气体液化方面发挥这一作用。然而,目前对资源要求极高的重稀土基化合物作为磁致冷材料的依赖,使得这种材料在全球范围内的使用难以为继。在此,我们旨在通过利用多热量冷却概念来缓解这一限制,该概念利用各向同性压力和磁场的外部刺激来定制和诱导与大热量效应相关的磁结构相变。本研究使用 La0.7Ce0.3Fe11.6Si1.4 作为无毒、低成本、低临界度的多铁性材料,探索多热量低温冷却的潜力、挑战和特殊性,在 190 K 至 30 K 的温度范围内实现了最大等温熵变化,最高可达 -28 J (kg K)-1。因此,多极冷却方法为定制相变特性提供了额外的自由度,并可能导致基于设计用途、非临界多铁氧体材料的高能效、环保型气体液化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds.

The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to -28 J (kg K)-1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Simultaneously Flame Retarding and Toughening of Epoxy Resin Composites Based on Two-Dimensional Polyhedral Oligomeric Silsesquioxane/Polyoxometalate Supramolecular Nanocrystals with Ultralow Loading. Ultrasmall CsPbBr3 Nanocrystals as a Recyclable Heterogeneous Photocatalyst in 100% E- and Anti-Markovnikov Sulfinylsulfonation of Terminal Alkynes. A MOFs/MIPs@GAs Ternary Composite Catalytic System with Graphene Oxide Aerogels as the Multifunctional Skeleton for High-Efficiency Detoxification of Organophosphate Nerve Agents in Pure Water. A Targeted and Protease-Activated Genetically Encoded Melittin-Containing Particle for the Treatment of Cutaneous and Visceral Leishmaniasis. Correlative Effects of Carbon Support Structures and Surface Properties on ORR Catalytic Activities of Loaded Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1