寒冷暴露的免疫反应:γδT细胞和TLR2介导的炎症的作用

IF 4.5 3区 医学 Q2 IMMUNOLOGY European Journal of Immunology Pub Date : 2024-07-10 DOI:10.1002/eji.202350897
Daniel Vasek, Peter Holicek, Frantisek Galatik, Anna Kratochvilova, Bianka Porubska, Veronika Somova, Natalie Fikarova, Michaela Hajkova, Martin Prevorovsky, Jitka M Zurmanova, Magdalena Krulova
{"title":"寒冷暴露的免疫反应:γδT细胞和TLR2介导的炎症的作用","authors":"Daniel Vasek,&nbsp;Peter Holicek,&nbsp;Frantisek Galatik,&nbsp;Anna Kratochvilova,&nbsp;Bianka Porubska,&nbsp;Veronika Somova,&nbsp;Natalie Fikarova,&nbsp;Michaela Hajkova,&nbsp;Martin Prevorovsky,&nbsp;Jitka M Zurmanova,&nbsp;Magdalena Krulova","doi":"10.1002/eji.202350897","DOIUrl":null,"url":null,"abstract":"<p>The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"54 10","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202350897","citationCount":"0","resultStr":"{\"title\":\"Immune response to cold exposure: Role of γδ T cells and TLR2-mediated inflammation\",\"authors\":\"Daniel Vasek,&nbsp;Peter Holicek,&nbsp;Frantisek Galatik,&nbsp;Anna Kratochvilova,&nbsp;Bianka Porubska,&nbsp;Veronika Somova,&nbsp;Natalie Fikarova,&nbsp;Michaela Hajkova,&nbsp;Martin Prevorovsky,&nbsp;Jitka M Zurmanova,&nbsp;Magdalena Krulova\",\"doi\":\"10.1002/eji.202350897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.</p>\",\"PeriodicalId\":165,\"journal\":{\"name\":\"European Journal of Immunology\",\"volume\":\"54 10\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202350897\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eji.202350897\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.202350897","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物的机体对寒冷具有极强的适应能力,这涉及到细胞代谢的复杂调整,最终导致产热。然而,寒冷诱导的压力会影响免疫反应,主要是通过去甲肾上腺素介导的途径。在我们的研究中,我们利用短期或长期轻度寒冷暴露的大鼠模型来研究寒冷适应过程中的全身免疫反应。为了提供与人类的相关性,我们在研究中加入了一组经常进行冷水游泳的人。我们的研究揭示了寒冷暴露、神经信号传导、免疫反应和产热调节之间的复杂关系。为期一天的寒冷暴露会引发应激反应,包括白色脂肪组织产生细胞因子,随后激活棕色脂肪组织并诱导产热。我们进一步研究了全身免疫反应,包括白细胞比例和细胞因子的产生。有趣的是,γδ T 细胞在更广泛的系统反应中成为可能的调节因子,这表明它们可能在寒冷适应的动态过程中做出了贡献。我们利用 RNA-seq进一步了解了γδT 细胞参与寒冷反应的机制。此外,我们还用 Toll 样受体 2 激动剂挑战了暴露于寒冷中的大鼠,结果显示免疫反应受到了显著的调节。这些发现大大有助于人们理解寒冷暴露下的生理适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immune response to cold exposure: Role of γδ T cells and TLR2-mediated inflammation

The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.70%
发文量
224
审稿时长
2 months
期刊介绍: The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.
期刊最新文献
Crafting an MSCA PhD Masterpiece: Guiding Students on the Verge of Discovery. Memory Phenotype Tfh Cells Develop Without Overt Infection and Support Germinal Center Formation and B Cell Responses to Viral Infection. Metabolic Reprogramming of Fibroblastic Reticular Cells in Immunity and Tolerance. Cytokine Autoantibodies Alter Gene Expression Profiles of Healthy Donors. Neural Crest-Derived Mesenchymal Cells Support Thymic Reconstitution After Lethal Irradiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1