Dejun Kong, Marina WillsonShirkey, Wenji Piao, Long Wu, Shunqun Luo, Allision Kensiski, Jing Zhao, Young Lee, Reza Abdi, Hong Zheng, Jonathan S Bromberg
Fibroblastic reticular cells (FRCs) are pivotal stromal components that maintain the structure of secondary lymphoid tissues and modulate the immune responses within the lymphoid microenvironment. In response to specific immune or inflammatory stimuli, such as infection or autoimmune triggers, FRCs undergo significant metabolic reprogramming. This process, originally characterized in cancer research, involves the regulation of key metabolic enzymes, pathways, and metabolites, resulting in functional transformations of these cells. Specifically, viruses stimulate FRCs to enhance the tricarboxylic acid cycle, while rheumatoid arthritis and sepsis prompt FRCs to increase oxidative phosphorylation. These changes enable FRCs to adapt their functions, such as proliferation or cytokine secretion, thereby effectively regulating the immune microenvironment to meet the dynamic needs of the immune system. This review provides a comprehensive update on the metabolic reprogramming of FRCs, highlighting how these changes support immune tolerance and response under varied physiological conditions.
{"title":"Metabolic Reprogramming of Fibroblastic Reticular Cells in Immunity and Tolerance.","authors":"Dejun Kong, Marina WillsonShirkey, Wenji Piao, Long Wu, Shunqun Luo, Allision Kensiski, Jing Zhao, Young Lee, Reza Abdi, Hong Zheng, Jonathan S Bromberg","doi":"10.1002/eji.202451321","DOIUrl":"https://doi.org/10.1002/eji.202451321","url":null,"abstract":"<p><p>Fibroblastic reticular cells (FRCs) are pivotal stromal components that maintain the structure of secondary lymphoid tissues and modulate the immune responses within the lymphoid microenvironment. In response to specific immune or inflammatory stimuli, such as infection or autoimmune triggers, FRCs undergo significant metabolic reprogramming. This process, originally characterized in cancer research, involves the regulation of key metabolic enzymes, pathways, and metabolites, resulting in functional transformations of these cells. Specifically, viruses stimulate FRCs to enhance the tricarboxylic acid cycle, while rheumatoid arthritis and sepsis prompt FRCs to increase oxidative phosphorylation. These changes enable FRCs to adapt their functions, such as proliferation or cytokine secretion, thereby effectively regulating the immune microenvironment to meet the dynamic needs of the immune system. This review provides a comprehensive update on the metabolic reprogramming of FRCs, highlighting how these changes support immune tolerance and response under varied physiological conditions.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451321"},"PeriodicalIF":4.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jakob Hjorth von Stemann, Florian Dubois, Violaine Saint-André, Vincent Bondet, Celine Posseme, Bruno Charbit, Lluis Quintana-Murci, Morten Bagge Hansen, Sisse Rye Ostrowski, Darragh Duffy
Autoantibodies against cytokines (c-aAb) have been implicated in the pathophysiology of autoimmune diseases, and a variety of infections. In addition, several independent studies have detected elevated titers of c-aAb in the circulation of healthy individuals. To further understand their impact on immune responses, we measured c-aAb against IFN-α, IFN-γ, CSF2, IL-1α, IL-6, and IL-10 in the plasma of 1000 healthy individuals of the Milieu Intérieur (MI) cohort. Focusing on donors above a defined positive cut-off we observed significant age effects for c-aAb against IL-1α, but no major environmental or lifestyle associated factors were identified. Using TruCulture stimulation data from the MI cohort, we observed a strong association between induced IL-1α and c-aAb levels after LPS stimulation. For several other stimuli, c-aAb against IL-1α and IL-10 were associated with decreased or increased proinflammatory gene expression, respectively. Finally, TruCulture assays supplemented with plasma containing high-titer c-aAb showed a strong influence of anti-IFN-α and anti-IL-6 c-aAb on both baseline and induced gene expression. In summary, this study shows a widespread prevalence of anti-cytokine autoantibodies in healthy donors with impacts on diverse immune responses, suggesting a significant contribution of c-aAb to interindividual immune heterogeneity.
{"title":"Cytokine Autoantibodies Alter Gene Expression Profiles of Healthy Donors.","authors":"Jakob Hjorth von Stemann, Florian Dubois, Violaine Saint-André, Vincent Bondet, Celine Posseme, Bruno Charbit, Lluis Quintana-Murci, Morten Bagge Hansen, Sisse Rye Ostrowski, Darragh Duffy","doi":"10.1002/eji.202451211","DOIUrl":"https://doi.org/10.1002/eji.202451211","url":null,"abstract":"<p><p>Autoantibodies against cytokines (c-aAb) have been implicated in the pathophysiology of autoimmune diseases, and a variety of infections. In addition, several independent studies have detected elevated titers of c-aAb in the circulation of healthy individuals. To further understand their impact on immune responses, we measured c-aAb against IFN-α, IFN-γ, CSF2, IL-1α, IL-6, and IL-10 in the plasma of 1000 healthy individuals of the Milieu Intérieur (MI) cohort. Focusing on donors above a defined positive cut-off we observed significant age effects for c-aAb against IL-1α, but no major environmental or lifestyle associated factors were identified. Using TruCulture stimulation data from the MI cohort, we observed a strong association between induced IL-1α and c-aAb levels after LPS stimulation. For several other stimuli, c-aAb against IL-1α and IL-10 were associated with decreased or increased proinflammatory gene expression, respectively. Finally, TruCulture assays supplemented with plasma containing high-titer c-aAb showed a strong influence of anti-IFN-α and anti-IL-6 c-aAb on both baseline and induced gene expression. In summary, this study shows a widespread prevalence of anti-cytokine autoantibodies in healthy donors with impacts on diverse immune responses, suggesting a significant contribution of c-aAb to interindividual immune heterogeneity.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451211"},"PeriodicalIF":4.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Doris Narki Tetteh, Kana Isono, Mari Hikosaka-Kuniishi, Hidetoshi Yamazaki
Reconstitution of the thymus is essential for assessing thymic function following injury. However, the currently employed cytoreductive regimes unvaryingly affect the thymic microenvironment, thereby impeding the recovery of T lymphopoiesis. The thymic stroma is composed of epithelial and mesenchymal cells. Thymic mesenchymal cells originate from the Neural crest (NC) and mesoderm and contribute to thymus organogenesis, yet their role in thymic regeneration is unclear. In this study, using transgenic mice expressing NC-specific Cre and Cre-driven DT receptors, we investigated the role of NC-derived mesenchymal cells in thymic regeneration following total body irradiation. We revealed that NC-derived mesenchymal cells have reduced susceptibility to irradiation and induce the upregulation of hematopoietic factors that promote thymus regeneration after irradiation. Additionally, using adult thymic organ culture and renal capsule transplantation, depletion of NC-derived mesenchymal cells resulted in a reduction of DN1-like early T-cell progenitors (ETP) and impaired thymic regeneration. Furthermore, among the numerous factors upregulated by NC-derived mesenchymal cells, Periostin and Flt3L were markedly increased after irradiation and promoted abundance of DN1-like ETPs during thymic reconstitution. Collectively, these findings highlight the importance of NC-derived mesenchymal cells in thymic regeneration.
{"title":"Neural Crest-Derived Mesenchymal Cells Support Thymic Reconstitution After Lethal Irradiation.","authors":"Doris Narki Tetteh, Kana Isono, Mari Hikosaka-Kuniishi, Hidetoshi Yamazaki","doi":"10.1002/eji.202451305","DOIUrl":"https://doi.org/10.1002/eji.202451305","url":null,"abstract":"<p><p>Reconstitution of the thymus is essential for assessing thymic function following injury. However, the currently employed cytoreductive regimes unvaryingly affect the thymic microenvironment, thereby impeding the recovery of T lymphopoiesis. The thymic stroma is composed of epithelial and mesenchymal cells. Thymic mesenchymal cells originate from the Neural crest (NC) and mesoderm and contribute to thymus organogenesis, yet their role in thymic regeneration is unclear. In this study, using transgenic mice expressing NC-specific Cre and Cre-driven DT receptors, we investigated the role of NC-derived mesenchymal cells in thymic regeneration following total body irradiation. We revealed that NC-derived mesenchymal cells have reduced susceptibility to irradiation and induce the upregulation of hematopoietic factors that promote thymus regeneration after irradiation. Additionally, using adult thymic organ culture and renal capsule transplantation, depletion of NC-derived mesenchymal cells resulted in a reduction of DN1-like early T-cell progenitors (ETP) and impaired thymic regeneration. Furthermore, among the numerous factors upregulated by NC-derived mesenchymal cells, Periostin and Flt3L were markedly increased after irradiation and promoted abundance of DN1-like ETPs during thymic reconstitution. Collectively, these findings highlight the importance of NC-derived mesenchymal cells in thymic regeneration.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451305"},"PeriodicalIF":4.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasmin Mann, Solveig Runge, Christoph Schell, Katja Gräwe, Gudrun Thoulass, Jessica Lao, Sandra Ammann, Sarah Grün, Christoph König, Sarah A Berger, Benedikt Hild, Peter Aichele, Stephan P Rosshart, Stephan Ehl
Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome caused by inborn errors of cytotoxicity. Patients with biallelic PRF1 null mutations (encoding perforin) usually develop excessive immune cell activation, hypercytokinemia, and life-threatening immunopathology in the first 6 months of life, often without an apparent infectious trigger. In contrast, perforin-deficient (PKO) mice only develop HLH after systemic infection with lymphocytic choriomeningitis virus (LCMV). We hypothesized that restricted microbe-immune cell interactions due to specific pathogen-free (SPF) housing might explain the need for this specific viral trigger in PKO mice. To investigate the influence of a "wild" microbiome in PKO mice, we fostered PKO newborns with Wildling microbiota ('PKO-Wildlings') and monitored them for signs of HLH. PKO-Wildlings survived long-term without spontaneous disease. Also, systemic infection with vaccinia virus did not reach the threshold of immune activation required to trigger HLH in PKO-Wildlings. Interestingly, after infection with LCMV, PKO-Wildlings developed an altered HLH pattern. This included lower IFN-γ serum levels along with improved IFN-γ-driven anemia, but more elevated levels of IL-17 and increased liver inflammation compared with PKO-SPF mice. Thus, wild microbiota alone is not sufficient to trigger HLH in PKO mice, but host-microbe interactions shape inflammatory cytokine patterns, thereby influencing manifestations of HLH immunopathology.
{"title":"The Microbiome Modifies Manifestations of Hemophagocytic Lymphohistiocytosis in Perforin-Deficient Mice.","authors":"Jasmin Mann, Solveig Runge, Christoph Schell, Katja Gräwe, Gudrun Thoulass, Jessica Lao, Sandra Ammann, Sarah Grün, Christoph König, Sarah A Berger, Benedikt Hild, Peter Aichele, Stephan P Rosshart, Stephan Ehl","doi":"10.1002/eji.202451061","DOIUrl":"https://doi.org/10.1002/eji.202451061","url":null,"abstract":"<p><p>Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome caused by inborn errors of cytotoxicity. Patients with biallelic PRF1 null mutations (encoding perforin) usually develop excessive immune cell activation, hypercytokinemia, and life-threatening immunopathology in the first 6 months of life, often without an apparent infectious trigger. In contrast, perforin-deficient (PKO) mice only develop HLH after systemic infection with lymphocytic choriomeningitis virus (LCMV). We hypothesized that restricted microbe-immune cell interactions due to specific pathogen-free (SPF) housing might explain the need for this specific viral trigger in PKO mice. To investigate the influence of a \"wild\" microbiome in PKO mice, we fostered PKO newborns with Wildling microbiota ('PKO-Wildlings') and monitored them for signs of HLH. PKO-Wildlings survived long-term without spontaneous disease. Also, systemic infection with vaccinia virus did not reach the threshold of immune activation required to trigger HLH in PKO-Wildlings. Interestingly, after infection with LCMV, PKO-Wildlings developed an altered HLH pattern. This included lower IFN-γ serum levels along with improved IFN-γ-driven anemia, but more elevated levels of IL-17 and increased liver inflammation compared with PKO-SPF mice. Thus, wild microbiota alone is not sufficient to trigger HLH in PKO mice, but host-microbe interactions shape inflammatory cytokine patterns, thereby influencing manifestations of HLH immunopathology.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451061"},"PeriodicalIF":4.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dillon Corvino, Martin Batstone, Brett G M Hughes, Tim Kempchen, Susanna S Ng, Nazhifah Salim, Franziska Schneppenheim, Denise Rommel, Ananthi Kumar, Sally Pearson, Jason Madore, Lambross T Koufariotis, Lisa Maria Steinheuer, Dilan Pathirana, Kevin Thurley, Michael Hölzel, Nicholas Borcherding, Matthias Braun, Tobias Bald
Background: Head and neck squamous cell carcinoma (HNSCC) is linked to human papillomavirus (HPV) infection. HPV-positive and HPV-negative HNSCC exhibit distinct molecular and clinical characteristics. Although checkpoint inhibitors have shown efficiency in recurrent/metastatic HNSCC, response variability persists regardless of HPV status. This study aimed to explore the CD8+ T-cell landscape in HPV-negative HNSCC.
Methods: We performed simultaneous single-cell RNA and TCR sequencing of CD8+ tumor-infiltrating lymphocytes (TILs) from treatment-naïve HPV-negative HNSCC patients. Additionally, cells were stimulated ex vivo, which allowed for the tracking of clonal transcriptomic responses.
Results: Our analysis identified a subset of CD8+ TILs highly enriched for interferon-stimulated genes (ISG). TCR analysis revealed ISG cells are clonally related to a population of granzyme K (GZMK)-expressing cells. However, unlike GZMK cells, which exhibited rapid effector-like phenotypes following stimulation, ISG cells were transcriptionally inert. Additionally, ISG cells showed specific enrichment within tumor and were found across multiple tumor entities.
Conclusions: ISG-enriched CD8+ TILs are a consistent feature of various tumor entities. These cells are poorly understood but possess characteristics that may impact antitumor immunity. Understanding the unique properties and functionality of ISG cells could offer innovative treatment approaches to improve patient outcomes in HPV-negative HNSCC and other cancer types.
{"title":"Type I Interferon Drives a Cellular State Inert to TCR-Stimulation and Could Impede Effective T-Cell Differentiation in Cancer.","authors":"Dillon Corvino, Martin Batstone, Brett G M Hughes, Tim Kempchen, Susanna S Ng, Nazhifah Salim, Franziska Schneppenheim, Denise Rommel, Ananthi Kumar, Sally Pearson, Jason Madore, Lambross T Koufariotis, Lisa Maria Steinheuer, Dilan Pathirana, Kevin Thurley, Michael Hölzel, Nicholas Borcherding, Matthias Braun, Tobias Bald","doi":"10.1002/eji.202451371","DOIUrl":"https://doi.org/10.1002/eji.202451371","url":null,"abstract":"<p><strong>Background: </strong>Head and neck squamous cell carcinoma (HNSCC) is linked to human papillomavirus (HPV) infection. HPV-positive and HPV-negative HNSCC exhibit distinct molecular and clinical characteristics. Although checkpoint inhibitors have shown efficiency in recurrent/metastatic HNSCC, response variability persists regardless of HPV status. This study aimed to explore the CD8<sup>+</sup> T-cell landscape in HPV-negative HNSCC.</p><p><strong>Methods: </strong>We performed simultaneous single-cell RNA and TCR sequencing of CD8<sup>+</sup> tumor-infiltrating lymphocytes (TILs) from treatment-naïve HPV-negative HNSCC patients. Additionally, cells were stimulated ex vivo, which allowed for the tracking of clonal transcriptomic responses.</p><p><strong>Results: </strong>Our analysis identified a subset of CD8<sup>+</sup> TILs highly enriched for interferon-stimulated genes (ISG). TCR analysis revealed ISG cells are clonally related to a population of granzyme K (GZMK)-expressing cells. However, unlike GZMK cells, which exhibited rapid effector-like phenotypes following stimulation, ISG cells were transcriptionally inert. Additionally, ISG cells showed specific enrichment within tumor and were found across multiple tumor entities.</p><p><strong>Conclusions: </strong>ISG-enriched CD8<sup>+</sup> TILs are a consistent feature of various tumor entities. These cells are poorly understood but possess characteristics that may impact antitumor immunity. Understanding the unique properties and functionality of ISG cells could offer innovative treatment approaches to improve patient outcomes in HPV-negative HNSCC and other cancer types.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451371"},"PeriodicalIF":4.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramakrishna Prabhu Gopalakrishnan, Marius Sigurdsson Østrøm, Frode Miltzow Skjeldal, Oddmund Bakke, Bjarne Bogen, Peter Csaba Huszthy
B cells differentiate from hematopoietic stem cells in the bone marrow (BM) and migrate as transitional cells to the spleen where final maturation takes place. Due to the enormous diversity in variable (V) regions of B cell receptors for antigen (BCR), B cells with complementary BCRs are likely to be generated. These could encounter each other in the BM or in secondary lymphoid organs. The outcome of such an event is unknown. To study this issue, we used two strains of gene-modified mice whose B cells display complementary BCRs. B cells of one strain express an idiotype+ (Id+) BCR while B cells of the other strain display an anti-idiotypic (αId) BCR. In vitro, B cells with complementary BCRs killed each other in a mechanism that required physical binding between BCR V-regions. In contrast, killing was unilateral in vivo: αId B cells with a follicular (FO) B cell phenotype were expanded, while Id+ B cells with a marginal zone (MZ) phenotype became deleted. The results show that B cells with complementary BCRs can recognize and regulate each other in vivo. This mechanism should be taken into account in theories for idiotypic regulation of the immune system.
B 细胞从骨髓(BM)中的造血干细胞分化而来,并作为过渡细胞迁移到脾脏,在那里最终成熟。由于 B 细胞抗原受体(BCR)的可变(V)区存在巨大的多样性,很可能会产生具有互补 BCR 的 B 细胞。这些 B 细胞可能在 BM 或继发性淋巴器官中相遇。这种情况的结果尚不清楚。为了研究这个问题,我们使用了两种B细胞显示互补BCR的基因修饰小鼠品系。其中一个品系的 B 细胞表达特异型+(Id+)BCR,而另一个品系的 B 细胞则显示抗特异型(αId)BCR。在体外,具有互补性 BCR 的 B 细胞通过一种需要 BCR V 区间物理结合的机制杀死对方。相反,体内的杀伤是单侧的:具有滤泡(FO)B细胞表型的αId B细胞扩增,而具有边缘区(MZ)表型的Id+ B细胞则被删除。结果表明,具有互补性 BCR 的 B 细胞可以在体内相互识别和调节。免疫系统的特异性调控理论应考虑到这一机制。
{"title":"B Cells With Complementary B Cell Receptors Can Kill Each Other.","authors":"Ramakrishna Prabhu Gopalakrishnan, Marius Sigurdsson Østrøm, Frode Miltzow Skjeldal, Oddmund Bakke, Bjarne Bogen, Peter Csaba Huszthy","doi":"10.1002/eji.202350890","DOIUrl":"https://doi.org/10.1002/eji.202350890","url":null,"abstract":"<p><p>B cells differentiate from hematopoietic stem cells in the bone marrow (BM) and migrate as transitional cells to the spleen where final maturation takes place. Due to the enormous diversity in variable (V) regions of B cell receptors for antigen (BCR), B cells with complementary BCRs are likely to be generated. These could encounter each other in the BM or in secondary lymphoid organs. The outcome of such an event is unknown. To study this issue, we used two strains of gene-modified mice whose B cells display complementary BCRs. B cells of one strain express an idiotype<sup>+</sup> (Id<sup>+</sup>) BCR while B cells of the other strain display an anti-idiotypic (αId) BCR. In vitro, B cells with complementary BCRs killed each other in a mechanism that required physical binding between BCR V-regions. In contrast, killing was unilateral in vivo: αId B cells with a follicular (FO) B cell phenotype were expanded, while Id<sup>+</sup> B cells with a marginal zone (MZ) phenotype became deleted. The results show that B cells with complementary BCRs can recognize and regulate each other in vivo. This mechanism should be taken into account in theories for idiotypic regulation of the immune system.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202350890"},"PeriodicalIF":4.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina Maria Rimpa, Maria Grigoriou, Athanasios Tasis, Nikolaos Paschalidis, Anastasia Filia, Giannis Vatsellas, Panagiotis Papazoglou, Antonios Chatzigeorgiou, Chrysa Kymparidou, Menelaos Papoutselis, Christina Misidou, Theodoros Spyropoulos, Despoina Dimitriou, Haralampos Hatzikirou, Konstantinos Liapis, Eleftheria Lamprianidou, Ioannis Kotsianidis, Ioannis Mitroulis
• Aging leads to chronic inflammation and immune dysfunction, heightening the risk of myeloid malignancies like MDS and CMML. • Both aging and MDS show alterations in monocyte subtypes and function. Aging boosts inflammatory genes upregulation, whereas MDS favors antigen presentation, reflecting distinct immune and disease-specific adaptations. • MDS shows reduced inflammatory activity in CD14+ cells, whereas CMML exhibits heightened inflammation, highlighting distinct disease mechanisms.
{"title":"Characterization of the Molecular Signature of Human Monocytes in Aging and Myelodysplastic Neoplasms.","authors":"Christina Maria Rimpa, Maria Grigoriou, Athanasios Tasis, Nikolaos Paschalidis, Anastasia Filia, Giannis Vatsellas, Panagiotis Papazoglou, Antonios Chatzigeorgiou, Chrysa Kymparidou, Menelaos Papoutselis, Christina Misidou, Theodoros Spyropoulos, Despoina Dimitriou, Haralampos Hatzikirou, Konstantinos Liapis, Eleftheria Lamprianidou, Ioannis Kotsianidis, Ioannis Mitroulis","doi":"10.1002/eji.202451387","DOIUrl":"https://doi.org/10.1002/eji.202451387","url":null,"abstract":"<p><p>• Aging leads to chronic inflammation and immune dysfunction, heightening the risk of myeloid malignancies like MDS and CMML. • Both aging and MDS show alterations in monocyte subtypes and function. Aging boosts inflammatory genes upregulation, whereas MDS favors antigen presentation, reflecting distinct immune and disease-specific adaptations. • MDS shows reduced inflammatory activity in CD14<sup>+</sup> cells, whereas CMML exhibits heightened inflammation, highlighting distinct disease mechanisms.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451387"},"PeriodicalIF":4.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
François Brinas, Nicolas Sailliet, Gaëlle Tilly, Laurence Delbos, Clarisse Kerleau, Magali Giral, Nicolas Degauque, Sophie Brouard, Richard Danger
The use of immunosuppressive treatment is required to prevent rejection events, even a long time after kidney transplantation despite rare recipients achieving long-term graft stability without the need for immunosuppressive treatment, called operationally tolerant patients (TOLs). We comprehensively investigate the immune system of long-term IS recipients (LTTs) and TOLs to highlight their shared and unique immune features. Blood immune cell phenotyping was performed by spectral cytometry. Samples from 34 individuals were analyzed, including 6 LTTs, 8 TOLs, 10 stable patients at 1 year posttransplantation (STAs), and 10 healthy volunteers. B cells differed between LTTs and TOLs with a decreased total B-cell frequency and the acquisition of a memory phenotype in LTTs whereas a naive phenotype is maintained in TOLs. The frequencies of IgD-CD27- B cells and CD11c+ memory B cells are increased in LTTs, with an exhausted phenotype, evoked by a significant decrease in CD25 expression. These CD11c+ B cells display an exhausted phenotype similar to those found in several chronic immune diseases in which they have been shown to participate in their pathophysiology, suggesting active chronic inflammation in LTTs. Altogether, these data indicate that precautions should be taken to minimize IS use.
尽管有极少数受者无需免疫抑制治疗即可获得长期稳定的移植物,他们被称为手术耐受患者(TOLs),但即使在肾移植术后很长一段时间内,也需要使用免疫抑制治疗来防止排斥反应的发生。我们全面研究了长期肾移植受者(LTTs)和手术耐受患者(TOLs)的免疫系统,以突出他们共同和独特的免疫特征。血液免疫细胞表型分析是通过光谱细胞仪进行的。分析了 34 人的样本,包括 6 名 LTT、8 名 TOL、10 名移植后 1 年的稳定期患者(STA)和 10 名健康志愿者。LTT和TOL患者的B细胞不同,LTT患者的B细胞总频率降低,并获得记忆表型,而TOL患者则保持天真表型。在 LTTs 中,IgD-CD27- B 细胞和 CD11c+ 记忆 B 细胞的频率增加,表型衰竭,CD25 表达显著下降。这些 CD11c+ B 细胞表现出的衰竭表型与几种慢性免疫性疾病中发现的表型相似,而在这些疾病中,CD11c+ B 细胞被证明参与了病理生理学,这表明 LTTs 中存在活跃的慢性炎症。总之,这些数据表明,应采取预防措施尽量减少 IS 的使用。
{"title":"Rise of a CD27<sup>-</sup> IgD<sup>-</sup> CD11c<sup>+</sup> B cells population in kidney recipients achieving long-term graft stability under immunosuppression.","authors":"François Brinas, Nicolas Sailliet, Gaëlle Tilly, Laurence Delbos, Clarisse Kerleau, Magali Giral, Nicolas Degauque, Sophie Brouard, Richard Danger","doi":"10.1002/eji.202451143","DOIUrl":"https://doi.org/10.1002/eji.202451143","url":null,"abstract":"<p><p>The use of immunosuppressive treatment is required to prevent rejection events, even a long time after kidney transplantation despite rare recipients achieving long-term graft stability without the need for immunosuppressive treatment, called operationally tolerant patients (TOLs). We comprehensively investigate the immune system of long-term IS recipients (LTTs) and TOLs to highlight their shared and unique immune features. Blood immune cell phenotyping was performed by spectral cytometry. Samples from 34 individuals were analyzed, including 6 LTTs, 8 TOLs, 10 stable patients at 1 year posttransplantation (STAs), and 10 healthy volunteers. B cells differed between LTTs and TOLs with a decreased total B-cell frequency and the acquisition of a memory phenotype in LTTs whereas a naive phenotype is maintained in TOLs. The frequencies of IgD<sup>-</sup>CD27<sup>-</sup> B cells and CD11c<sup>+</sup> memory B cells are increased in LTTs, with an exhausted phenotype, evoked by a significant decrease in CD25 expression. These CD11c<sup>+</sup> B cells display an exhausted phenotype similar to those found in several chronic immune diseases in which they have been shown to participate in their pathophysiology, suggesting active chronic inflammation in LTTs. Altogether, these data indicate that precautions should be taken to minimize IS use.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e2451143"},"PeriodicalIF":4.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In systemic lupus erythematosus (SLE), neutrophil dysregulation and neutrophil extracellular traps (NETs) formation contribute to disease pathogenesis, potentially worsening the autoimmune response. Although research indicates NETs' involvement in various autoimmune conditions, their relationship with regulatory T cells (Tregs) in SLE remains elusive. In this study, in vivo experiments were involved in administering NET injections to C57BL/6 and MRL/Ipr mice. In vitro, a co-culture system facilitated interaction between Tregs and NETs. Proteomic analysis elucidated NET composition, while RNA sequencing delineated their impact on Treg differentiation. We demonstrated that increased NET levels correlate inversely with Treg abundance in SLE patients, influencing both their proportion and functionality. NET administration reduced Treg levels and induced lupus-like symptoms in C57BL/6 mice, exacerbating symptoms in MRL/Ipr mice. DNase I treatment mitigated NET effects, restoring Treg levels and alleviating symptoms. RNA sequencing revealed altered gene expression in naïve CD4+ T cells exposed to NETs. Additionally, proteomic analysis showed S100A10 protein changes between SLE patients and healthy controls, hindering Treg differentiation. NETs influence TLR-4 of naïve CD4+ T cells via S100A10, thereby modulating Treg proportion and functionality. These findings highlight the critical role of NETs in Treg differentiation in SLE, suggesting that targeting NETs may provide a novel therapeutic approach.
在系统性红斑狼疮(SLE)中,中性粒细胞失调和中性粒细胞胞外捕获物(NETs)的形成是疾病的发病机制之一,可能会加重自身免疫反应。尽管研究表明NETs参与了多种自身免疫性疾病,但它们与系统性红斑狼疮中调节性T细胞(Tregs)的关系仍然扑朔迷离。在本研究中,体内实验涉及向 C57BL/6 和 MRL/Ipr 小鼠注射 NET。在体外,共培养系统促进了Tregs和NETs之间的相互作用。蛋白质组分析阐明了NET的组成,而RNA测序则描述了它们对Treg分化的影响。我们的研究表明,NET水平的增加与系统性红斑狼疮患者Treg的丰度成反比,会影响其比例和功能。给 C57BL/6 小鼠施用 NET 会降低 Treg 的水平并诱发狼疮样症状,同时会加重 MRL/Ipr 小鼠的症状。DNase I处理减轻了NET的影响,恢复了Treg水平并减轻了症状。RNA 测序显示,暴露于 NET 的幼稚 CD4+ T 细胞的基因表达发生了改变。此外,蛋白质组分析显示,系统性红斑狼疮患者和健康对照组的S100A10蛋白发生了变化,从而阻碍了Treg的分化。NET通过S100A10影响幼稚CD4+ T细胞的TLR-4,从而调节Treg的比例和功能。这些发现凸显了NET在系统性红斑狼疮Treg分化中的关键作用,表明针对NET的治疗可能是一种新的治疗方法。
{"title":"Neutrophil Extracellular Traps Participate in the Pathogenesis of Lupus Through S100A10-Mediated Regulatory T-Cell Differentiation and Functional Abnormalities.","authors":"Hua Guo, Qian Liang, Zhonghui Xue, Junling Yang, Pengyu Chen, Juan Ji, Jing Li, Genkai Guo, Haixia Cao, Xiaoqi Sha, Rui Zhao, Chen Dong, Zhifeng Gu","doi":"10.1002/eji.202451298","DOIUrl":"https://doi.org/10.1002/eji.202451298","url":null,"abstract":"<p><p>In systemic lupus erythematosus (SLE), neutrophil dysregulation and neutrophil extracellular traps (NETs) formation contribute to disease pathogenesis, potentially worsening the autoimmune response. Although research indicates NETs' involvement in various autoimmune conditions, their relationship with regulatory T cells (Tregs) in SLE remains elusive. In this study, in vivo experiments were involved in administering NET injections to C57BL/6 and MRL/Ipr mice. In vitro, a co-culture system facilitated interaction between Tregs and NETs. Proteomic analysis elucidated NET composition, while RNA sequencing delineated their impact on Treg differentiation. We demonstrated that increased NET levels correlate inversely with Treg abundance in SLE patients, influencing both their proportion and functionality. NET administration reduced Treg levels and induced lupus-like symptoms in C57BL/6 mice, exacerbating symptoms in MRL/Ipr mice. DNase I treatment mitigated NET effects, restoring Treg levels and alleviating symptoms. RNA sequencing revealed altered gene expression in naïve CD4<sup>+</sup> T cells exposed to NETs. Additionally, proteomic analysis showed S100A10 protein changes between SLE patients and healthy controls, hindering Treg differentiation. NETs influence TLR-4 of naïve CD4<sup>+</sup> T cells via S100A10, thereby modulating Treg proportion and functionality. These findings highlight the critical role of NETs in Treg differentiation in SLE, suggesting that targeting NETs may provide a novel therapeutic approach.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":" ","pages":"e202451298"},"PeriodicalIF":4.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}