{"title":"多尺度水泥基材料在不同水化阶段的超声波特性。","authors":"Sukanya Basu , Saptarshi Sasmal , Tribikram Kundu","doi":"10.1016/j.ultras.2024.107397","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring the microstructural change in cementitious materials during hydration is an essential but challenging task. Therefore, a non-invasive and sophisticated technique is warranted to understand the microscopic behaviour of the multiphase cementitious materials (where the length scale of the constituents varies from centimeters to micrometers) in different stages of hydration. Due to exothermic hydration reactions, different hydration products start to evolve with individual mechanical properties. In concrete, an interface transition zone (ITZ) appears between the aggregate surface and paste matrix, which influences the overall properties of concrete material. In the present research, 1) several wave characteristics, such as wave velocity, energy distribution, and signal phase are found out using Ultrasonic Pulse Velocity (UPV), Wavelet Packet Energy (WPE) and Hilbert Transform (HT) methods, to monitor the hydration mechanism (1d-28d) in cement-based materials with two levels of heterogeneities (cement paste and concrete, representing microscale and mesoscale, respectively). Also, the unique nonlinear behaviour is studied in the frequency domain using the promising Sideband Energy Ratio (SER) and Sideband Peak Count Index (SPC-I) methods. 2) Numerical simulations are carried out to understand the wave interaction in the developing microstructure. A discretized microstructure of cement shows microscopic details of each phase at any instant of hydration (e.g., formation stage and after complete maturity level). The experimental and numerical investigations on the characteristics of the nonlinear ultrasonic wave propagation show the impact of microstructural development of multi-scale cementitious materials during hydration.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"142 ","pages":"Article 107397"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic wave characteristics in multiscale cementitious materials at different stages of hydration\",\"authors\":\"Sukanya Basu , Saptarshi Sasmal , Tribikram Kundu\",\"doi\":\"10.1016/j.ultras.2024.107397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring the microstructural change in cementitious materials during hydration is an essential but challenging task. Therefore, a non-invasive and sophisticated technique is warranted to understand the microscopic behaviour of the multiphase cementitious materials (where the length scale of the constituents varies from centimeters to micrometers) in different stages of hydration. Due to exothermic hydration reactions, different hydration products start to evolve with individual mechanical properties. In concrete, an interface transition zone (ITZ) appears between the aggregate surface and paste matrix, which influences the overall properties of concrete material. In the present research, 1) several wave characteristics, such as wave velocity, energy distribution, and signal phase are found out using Ultrasonic Pulse Velocity (UPV), Wavelet Packet Energy (WPE) and Hilbert Transform (HT) methods, to monitor the hydration mechanism (1d-28d) in cement-based materials with two levels of heterogeneities (cement paste and concrete, representing microscale and mesoscale, respectively). Also, the unique nonlinear behaviour is studied in the frequency domain using the promising Sideband Energy Ratio (SER) and Sideband Peak Count Index (SPC-I) methods. 2) Numerical simulations are carried out to understand the wave interaction in the developing microstructure. A discretized microstructure of cement shows microscopic details of each phase at any instant of hydration (e.g., formation stage and after complete maturity level). The experimental and numerical investigations on the characteristics of the nonlinear ultrasonic wave propagation show the impact of microstructural development of multi-scale cementitious materials during hydration.</p></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"142 \",\"pages\":\"Article 107397\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24001604\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24001604","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Ultrasonic wave characteristics in multiscale cementitious materials at different stages of hydration
Monitoring the microstructural change in cementitious materials during hydration is an essential but challenging task. Therefore, a non-invasive and sophisticated technique is warranted to understand the microscopic behaviour of the multiphase cementitious materials (where the length scale of the constituents varies from centimeters to micrometers) in different stages of hydration. Due to exothermic hydration reactions, different hydration products start to evolve with individual mechanical properties. In concrete, an interface transition zone (ITZ) appears between the aggregate surface and paste matrix, which influences the overall properties of concrete material. In the present research, 1) several wave characteristics, such as wave velocity, energy distribution, and signal phase are found out using Ultrasonic Pulse Velocity (UPV), Wavelet Packet Energy (WPE) and Hilbert Transform (HT) methods, to monitor the hydration mechanism (1d-28d) in cement-based materials with two levels of heterogeneities (cement paste and concrete, representing microscale and mesoscale, respectively). Also, the unique nonlinear behaviour is studied in the frequency domain using the promising Sideband Energy Ratio (SER) and Sideband Peak Count Index (SPC-I) methods. 2) Numerical simulations are carried out to understand the wave interaction in the developing microstructure. A discretized microstructure of cement shows microscopic details of each phase at any instant of hydration (e.g., formation stage and after complete maturity level). The experimental and numerical investigations on the characteristics of the nonlinear ultrasonic wave propagation show the impact of microstructural development of multi-scale cementitious materials during hydration.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.