Chu-Hao Liu MD, Qi-Qi Xue MD, Yi-Qing Zhang MD, PhD, Dong-Yan Zhang MD, PhD, Yan Li MD, PhD
{"title":"基于网络药理学和实验验证的天麻钩藤颗粒的降压作用和潜在机制","authors":"Chu-Hao Liu MD, Qi-Qi Xue MD, Yi-Qing Zhang MD, PhD, Dong-Yan Zhang MD, PhD, Yan Li MD, PhD","doi":"10.1111/jch.14833","DOIUrl":null,"url":null,"abstract":"<p>Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein–protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.</p>","PeriodicalId":50237,"journal":{"name":"Journal of Clinical Hypertension","volume":"26 9","pages":"1024-1038"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jch.14833","citationCount":"0","resultStr":"{\"title\":\"Anti-hypertensive effect and potential mechanism of gastrodia-uncaria granules based on network pharmacology and experimental validation\",\"authors\":\"Chu-Hao Liu MD, Qi-Qi Xue MD, Yi-Qing Zhang MD, PhD, Dong-Yan Zhang MD, PhD, Yan Li MD, PhD\",\"doi\":\"10.1111/jch.14833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein–protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.</p>\",\"PeriodicalId\":50237,\"journal\":{\"name\":\"Journal of Clinical Hypertension\",\"volume\":\"26 9\",\"pages\":\"1024-1038\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jch.14833\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jch.14833\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Hypertension","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jch.14833","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Anti-hypertensive effect and potential mechanism of gastrodia-uncaria granules based on network pharmacology and experimental validation
Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein–protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.
期刊介绍:
The Journal of Clinical Hypertension is a peer-reviewed, monthly publication that serves internists, cardiologists, nephrologists, endocrinologists, hypertension specialists, primary care practitioners, pharmacists and all professionals interested in hypertension by providing objective, up-to-date information and practical recommendations on the full range of clinical aspects of hypertension. Commentaries and columns by experts in the field provide further insights into our original research articles as well as on major articles published elsewhere. Major guidelines for the management of hypertension are also an important feature of the Journal. Through its partnership with the World Hypertension League, JCH will include a new focus on hypertension and public health, including major policy issues, that features research and reviews related to disease characteristics and management at the population level.