衰老和老年相关疾病建模策略。

IF 4.1 Q2 GERIATRICS & GERONTOLOGY npj aging Pub Date : 2024-07-10 DOI:10.1038/s41514-024-00161-5
D Jothi, Linda Anna Michelle Kulka
{"title":"衰老和老年相关疾病建模策略。","authors":"D Jothi, Linda Anna Michelle Kulka","doi":"10.1038/s41514-024-00161-5","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"32"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237002/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strategies for modeling aging and age-related diseases.\",\"authors\":\"D Jothi, Linda Anna Michelle Kulka\",\"doi\":\"10.1038/s41514-024-00161-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.</p>\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"10 1\",\"pages\":\"32\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237002/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-024-00161-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-024-00161-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

将源自患者的体细胞重新编程为 IPSCs(诱导多能干细胞)的能力使人们能够更好地了解衰老和与年龄相关的疾病,如帕金森氏症和阿尔茨海默氏症。已建立的患者衍生疾病模型模拟了疾病病理,可用于设计治疗衰老和老年相关疾病的药物。然而,供体细胞的年龄和基因突变、采用的重编程和分化方案往往会给建立合适的疾病模型带来挑战。在这篇综述中,我们将重点讨论将患者来源细胞成功重编程和分化为衰老和老年相关疾病疾病模型的各种策略,强调重现疾病病理的准确性,以及如何克服其在细胞替代疗法和药物开发中潜在应用的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies for modeling aging and age-related diseases.

The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
期刊最新文献
Multimorbidity is associated with myocardial DNA damage, nucleolar stress, dysregulated energy metabolism, and senescence in cardiovascular disease. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. Association between gut microbiota and locomotive syndrome risk in healthy Japanese adults: a cross-sectional study. Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study. Aging modulates the impact of cognitive interference subtypes on dynamic connectivity across a distributed motor network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1