MRGazer:从个体空间的功能性磁共振成像解码眼球注视点。

Xiuwen Wu, Rongjie Hu, Jie Liang, Yanming Wang, Bensheng Qiu, Xiaoxiao Wang
{"title":"MRGazer:从个体空间的功能性磁共振成像解码眼球注视点。","authors":"Xiuwen Wu, Rongjie Hu, Jie Liang, Yanming Wang, Bensheng Qiu, Xiaoxiao Wang","doi":"10.1088/1741-2552/ad6185","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Eye-tracking research has proven valuable in understanding numerous cognitive functions. Recently, Frey<i>et al</i>provided an exciting deep learning method for learning eye movements from functional magnetic resonance imaging (fMRI) data. It employed the multi-step co-registration of fMRI into the group template to obtain eyeball signal, and thus required additional templates and was time consuming. To resolve this issue, in this paper, we propose a framework named MRGazer for predicting eye gaze points from fMRI in individual space.<i>Approach</i>. The MRGazer consists of an eyeball extraction module and a residual network-based eye gaze prediction module. Compared to the previous method, the proposed framework skips the fMRI co-registration step, simplifies the processing protocol, and achieves end-to-end eye gaze regression.<i>Main results</i>. The proposed method achieved superior performance in eye fixation regression (Euclidean error, EE = 2.04°) than the co-registration-based method (EE = 2.89°), and delivered objective results within a shorter time (∼0.02 s volume<sup>-1</sup>) than prior method (∼0.3 s volume<sup>-1</sup>).<i>Significance</i>. The MRGazer is an efficient, simple, and accurate deep learning framework for predicting eye movement from fMRI data, and can be employed during fMRI scans in psychological and cognitive research. The code is available athttps://github.com/ustc-bmec/MRGazer.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRGazer: decoding eye gaze points from functional magnetic resonance imaging in individual space.\",\"authors\":\"Xiuwen Wu, Rongjie Hu, Jie Liang, Yanming Wang, Bensheng Qiu, Xiaoxiao Wang\",\"doi\":\"10.1088/1741-2552/ad6185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Eye-tracking research has proven valuable in understanding numerous cognitive functions. Recently, Frey<i>et al</i>provided an exciting deep learning method for learning eye movements from functional magnetic resonance imaging (fMRI) data. It employed the multi-step co-registration of fMRI into the group template to obtain eyeball signal, and thus required additional templates and was time consuming. To resolve this issue, in this paper, we propose a framework named MRGazer for predicting eye gaze points from fMRI in individual space.<i>Approach</i>. The MRGazer consists of an eyeball extraction module and a residual network-based eye gaze prediction module. Compared to the previous method, the proposed framework skips the fMRI co-registration step, simplifies the processing protocol, and achieves end-to-end eye gaze regression.<i>Main results</i>. The proposed method achieved superior performance in eye fixation regression (Euclidean error, EE = 2.04°) than the co-registration-based method (EE = 2.89°), and delivered objective results within a shorter time (∼0.02 s volume<sup>-1</sup>) than prior method (∼0.3 s volume<sup>-1</sup>).<i>Significance</i>. The MRGazer is an efficient, simple, and accurate deep learning framework for predicting eye movement from fMRI data, and can be employed during fMRI scans in psychological and cognitive research. The code is available athttps://github.com/ustc-bmec/MRGazer.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad6185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad6185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

眼动跟踪研究已被证明对了解许多认知功能很有价值。最近,Frey 等人提供了一种令人兴奋的深度学习方法,用于从功能性磁共振成像(fMRI)数据中学习眼球运动。该方法采用将 fMRI 多步共注册到组模板中的方法来获取眼球信号,因此需要额外的模板,而且耗时较长。为了解决这个问题,我们在本文中提出了一个名为 MRGazer 的框架,用于从个体空间的 fMRI 预测眼球注视点。MRGazer 由眼球提取模块和基于残差网络的眼球注视预测模块组成。与之前的方法相比,所提出的框架跳过了 fMRI 协同注册步骤,简化了处理协议,实现了端到端的眼注视回归。与基于共登记的方法(EE=2.89°)相比,提出的方法在眼球固定回归(欧氏误差,EE=2.04°)方面取得了更优越的性能,并且与之前的方法(约0.3秒/卷)相比,能在更短的时间内(约0.02秒/卷)提供客观的结果。代码见 https://github.com/ustc-bmec/MRGazer。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRGazer: decoding eye gaze points from functional magnetic resonance imaging in individual space.

Objective. Eye-tracking research has proven valuable in understanding numerous cognitive functions. Recently, Freyet alprovided an exciting deep learning method for learning eye movements from functional magnetic resonance imaging (fMRI) data. It employed the multi-step co-registration of fMRI into the group template to obtain eyeball signal, and thus required additional templates and was time consuming. To resolve this issue, in this paper, we propose a framework named MRGazer for predicting eye gaze points from fMRI in individual space.Approach. The MRGazer consists of an eyeball extraction module and a residual network-based eye gaze prediction module. Compared to the previous method, the proposed framework skips the fMRI co-registration step, simplifies the processing protocol, and achieves end-to-end eye gaze regression.Main results. The proposed method achieved superior performance in eye fixation regression (Euclidean error, EE = 2.04°) than the co-registration-based method (EE = 2.89°), and delivered objective results within a shorter time (∼0.02 s volume-1) than prior method (∼0.3 s volume-1).Significance. The MRGazer is an efficient, simple, and accurate deep learning framework for predicting eye movement from fMRI data, and can be employed during fMRI scans in psychological and cognitive research. The code is available athttps://github.com/ustc-bmec/MRGazer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temporal attention fusion network with custom loss function for EEG-fNIRS classification. Classification of hand movements from EEG using a FusionNet based LSTM network. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. Patient-specific visual neglect severity estimation for stroke patients with neglect using EEG. SSVEP modulation via non-volitional neurofeedback: An in silico proof of concept.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1