{"title":"为可逆质子陶瓷电化学电池构建高性能微型燃料电极","authors":"Yeqing Ling, Feifan Huang, Bin Wang, Tao Li","doi":"10.1016/j.elecom.2024.107775","DOIUrl":null,"url":null,"abstract":"<div><p>Reversible proton ceramic electrochemical cells (R-PCECs) are of great interest as efficient energy conversion device. Optimization of structural design can enhance the mechanical properties and gas transport of the cells, resulting in improved electrochemical performance. In this study, we developed a 7-channel micro-monolithic R-PCEC for the first time, with uniform channel distribution and smaller gas diffusion pathway length using phase inversion/extrusion technique. The assembled cell with Ni-BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3-δ</sub> (Ni-BZCYYb, fuel electrode support) | BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3-δ</sub> (BZCYYb, electrolyte) | PrBa<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>1.5</sub>Fe<sub>0.5</sub>O<sub>5+δ</sub> (PBSCF, air electrode) structure showed a peak power density of 0.94 W cm<sup>−2</sup> at 700 °C in fuel cell mode and electrolysis current density of 2.17 A cm<sup>−2</sup> at 700 °C with an operating voltage of 1.3 V. Additionally, electrochemical impedance spectroscopy (EIS) further indicated that the diffusive polarization of the structured cell was effectively reduced compared to single-channel counterpart.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107775"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001188/pdfft?md5=1cba7dad5499fea3573dd12b53badc58&pid=1-s2.0-S1388248124001188-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Constructing high-performance micro fuel electrodes for reversible proton ceramic electrochemical cells\",\"authors\":\"Yeqing Ling, Feifan Huang, Bin Wang, Tao Li\",\"doi\":\"10.1016/j.elecom.2024.107775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reversible proton ceramic electrochemical cells (R-PCECs) are of great interest as efficient energy conversion device. Optimization of structural design can enhance the mechanical properties and gas transport of the cells, resulting in improved electrochemical performance. In this study, we developed a 7-channel micro-monolithic R-PCEC for the first time, with uniform channel distribution and smaller gas diffusion pathway length using phase inversion/extrusion technique. The assembled cell with Ni-BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3-δ</sub> (Ni-BZCYYb, fuel electrode support) | BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3-δ</sub> (BZCYYb, electrolyte) | PrBa<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>1.5</sub>Fe<sub>0.5</sub>O<sub>5+δ</sub> (PBSCF, air electrode) structure showed a peak power density of 0.94 W cm<sup>−2</sup> at 700 °C in fuel cell mode and electrolysis current density of 2.17 A cm<sup>−2</sup> at 700 °C with an operating voltage of 1.3 V. Additionally, electrochemical impedance spectroscopy (EIS) further indicated that the diffusive polarization of the structured cell was effectively reduced compared to single-channel counterpart.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"166 \",\"pages\":\"Article 107775\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001188/pdfft?md5=1cba7dad5499fea3573dd12b53badc58&pid=1-s2.0-S1388248124001188-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001188\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001188","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
可逆质子陶瓷电化学电池(R-PCECs)作为一种高效的能量转换装置备受关注。优化结构设计可以提高电池的机械性能和气体传输性能,从而改善电化学性能。在这项研究中,我们利用相反转/挤压技术首次开发出了一种 7 通道微单片 R-PCEC 电池,其通道分布均匀,气体扩散通道长度较小。组装好的电池由 Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (Ni-BZCYYb,燃料电极支撑) | BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb,电解质) | PrBa0.5Sr0.5Co1.5Fe0.5O5+δ(PBSCF,空气电极)结构的燃料电池在 700 °C 时的峰值功率密度为 0.94 W cm-2,在 700 °C 时的电解电流密度为 2.此外,电化学阻抗谱(EIS)进一步表明,与单通道电池相比,结构电池的扩散极化有效降低。
Reversible proton ceramic electrochemical cells (R-PCECs) are of great interest as efficient energy conversion device. Optimization of structural design can enhance the mechanical properties and gas transport of the cells, resulting in improved electrochemical performance. In this study, we developed a 7-channel micro-monolithic R-PCEC for the first time, with uniform channel distribution and smaller gas diffusion pathway length using phase inversion/extrusion technique. The assembled cell with Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (Ni-BZCYYb, fuel electrode support) | BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb, electrolyte) | PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF, air electrode) structure showed a peak power density of 0.94 W cm−2 at 700 °C in fuel cell mode and electrolysis current density of 2.17 A cm−2 at 700 °C with an operating voltage of 1.3 V. Additionally, electrochemical impedance spectroscopy (EIS) further indicated that the diffusive polarization of the structured cell was effectively reduced compared to single-channel counterpart.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.