Xiangbao Lin , Lei Zheng , Xiaodong Wang , Ping Xu , Chen Zeng , Mingdong Liao , Mingyu Zhang , Qizhong Huang
{"title":"再生碳纤维增强超细晶粒碳基质复合材料的研究","authors":"Xiangbao Lin , Lei Zheng , Xiaodong Wang , Ping Xu , Chen Zeng , Mingdong Liao , Mingyu Zhang , Qizhong Huang","doi":"10.1016/j.susmat.2024.e01033","DOIUrl":null,"url":null,"abstract":"<div><p>To broaden the usefulness of recycled carbon fibers and develop the high value-added product, the recycled carbon fiber-reinforced carbon-matrix composites were prepared using ultrafine-grain coke as a filler and coal tar pitch as a binder via a liquid mixing process. A comprehensive study and investigation of the microstructures and properties of recycled carbon fibers and composites were conducted. It was found that the recycled PAN-based carbon fiber (rPCF) outperformed the recycled rayon-based carbon fiber (rRCF) in terms of fiber integrity and pitch-coated effect in the recycling and forming processes. By relieving thermal stress, lowering stacking pores, and inhibiting the growth of shrinkage pores, the rCF can promote the sintering of the green body. The flexural strength of rPCF-reinforced carbon-matrix composite (30.70 MPa) and rRCF-reinforced carbon-matrix composite (20.75 MPa) increased by 60.6% and 8.6% than that of pristine carbon-matrix composite (19.11 MPa), respectively. The difference in mechanical properties between rPCF-reinforced carbon-matrix composite and rRCF-reinforced carbon-matrix composite is attributed to the mechanical interlock mechanism and fiber pull-out mechanism. This work provides a propagable, affordable, and environment-friendly idea for recycling waste carbon fiber and producing recycled carbon fiber reinforced composites.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of recycled carbon fiber-reinforced ultrafine-grain carbon-matrix composites\",\"authors\":\"Xiangbao Lin , Lei Zheng , Xiaodong Wang , Ping Xu , Chen Zeng , Mingdong Liao , Mingyu Zhang , Qizhong Huang\",\"doi\":\"10.1016/j.susmat.2024.e01033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To broaden the usefulness of recycled carbon fibers and develop the high value-added product, the recycled carbon fiber-reinforced carbon-matrix composites were prepared using ultrafine-grain coke as a filler and coal tar pitch as a binder via a liquid mixing process. A comprehensive study and investigation of the microstructures and properties of recycled carbon fibers and composites were conducted. It was found that the recycled PAN-based carbon fiber (rPCF) outperformed the recycled rayon-based carbon fiber (rRCF) in terms of fiber integrity and pitch-coated effect in the recycling and forming processes. By relieving thermal stress, lowering stacking pores, and inhibiting the growth of shrinkage pores, the rCF can promote the sintering of the green body. The flexural strength of rPCF-reinforced carbon-matrix composite (30.70 MPa) and rRCF-reinforced carbon-matrix composite (20.75 MPa) increased by 60.6% and 8.6% than that of pristine carbon-matrix composite (19.11 MPa), respectively. The difference in mechanical properties between rPCF-reinforced carbon-matrix composite and rRCF-reinforced carbon-matrix composite is attributed to the mechanical interlock mechanism and fiber pull-out mechanism. This work provides a propagable, affordable, and environment-friendly idea for recycling waste carbon fiber and producing recycled carbon fiber reinforced composites.</p></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724002136\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002136","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of recycled carbon fiber-reinforced ultrafine-grain carbon-matrix composites
To broaden the usefulness of recycled carbon fibers and develop the high value-added product, the recycled carbon fiber-reinforced carbon-matrix composites were prepared using ultrafine-grain coke as a filler and coal tar pitch as a binder via a liquid mixing process. A comprehensive study and investigation of the microstructures and properties of recycled carbon fibers and composites were conducted. It was found that the recycled PAN-based carbon fiber (rPCF) outperformed the recycled rayon-based carbon fiber (rRCF) in terms of fiber integrity and pitch-coated effect in the recycling and forming processes. By relieving thermal stress, lowering stacking pores, and inhibiting the growth of shrinkage pores, the rCF can promote the sintering of the green body. The flexural strength of rPCF-reinforced carbon-matrix composite (30.70 MPa) and rRCF-reinforced carbon-matrix composite (20.75 MPa) increased by 60.6% and 8.6% than that of pristine carbon-matrix composite (19.11 MPa), respectively. The difference in mechanical properties between rPCF-reinforced carbon-matrix composite and rRCF-reinforced carbon-matrix composite is attributed to the mechanical interlock mechanism and fiber pull-out mechanism. This work provides a propagable, affordable, and environment-friendly idea for recycling waste carbon fiber and producing recycled carbon fiber reinforced composites.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.