{"title":"设计和多体动力学分析深海采矿车辆的内嵌式和偏置式履带配置,以增强在松软海底的牵引力","authors":"C. Janarthanan , R. Muruganandhan , K. Gopkumar","doi":"10.1016/j.jterra.2024.100999","DOIUrl":null,"url":null,"abstract":"<div><p>The deep sea polymetallic nodule mining vehicle maneuverability depends on the vehicle track parameters and track configuration. The traction force offered by the deep sea soil is very limited for the mining vehicle during dynamic operating conditions on the seabed and it is very critical to maneuver against the external resistances. The present study strives to arrive at optimum track parameters for enhancing the traction of the vehicle for the pre-determined seabed conditions. The efficacy of the four tracks in Inline and Offset track configurations on the soft soil has been compared. To improve the traction force estimation, the existing mathematical model was modified with the inclusion of dynamic variation of shear stress-shear displacement characteristics and variation in shear residual displacement concerning the track parameters. The modified mathematical model was solved in a well-established mathematical tool and found that there are 30 percent improvements in the traction force generation for the offset configuration over inline track configuration. The optimum track length to width ratio (<span><math><mrow><mi>L</mi><mo>/</mo><mi>b</mi></mrow></math></span>) was also estimated for the given contact area to configure the vehicle track for improvement of the traction. Further, a Multi-Body Dynamic (MBD) analysis has been carried out in commercially available soil-machine interaction tool for the inline and offset track configurations with actual measured seabed soil parameters. The MBD analysis proved that the sinkage and vehicle gradient is significantly increased in the inline track configuration due to disturbance created by the front tracks. The simulation results confirm that the offset track configuration is suitable for the deep sea soil conditions for handling the higher payload of a deep sea mining vehicle.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"116 ","pages":"Article 100999"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and multi-body dynamic analysis of inline and offset track configuration in deep-sea mining vehicles for enhanced traction in soft seabed\",\"authors\":\"C. Janarthanan , R. Muruganandhan , K. Gopkumar\",\"doi\":\"10.1016/j.jterra.2024.100999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The deep sea polymetallic nodule mining vehicle maneuverability depends on the vehicle track parameters and track configuration. The traction force offered by the deep sea soil is very limited for the mining vehicle during dynamic operating conditions on the seabed and it is very critical to maneuver against the external resistances. The present study strives to arrive at optimum track parameters for enhancing the traction of the vehicle for the pre-determined seabed conditions. The efficacy of the four tracks in Inline and Offset track configurations on the soft soil has been compared. To improve the traction force estimation, the existing mathematical model was modified with the inclusion of dynamic variation of shear stress-shear displacement characteristics and variation in shear residual displacement concerning the track parameters. The modified mathematical model was solved in a well-established mathematical tool and found that there are 30 percent improvements in the traction force generation for the offset configuration over inline track configuration. The optimum track length to width ratio (<span><math><mrow><mi>L</mi><mo>/</mo><mi>b</mi></mrow></math></span>) was also estimated for the given contact area to configure the vehicle track for improvement of the traction. Further, a Multi-Body Dynamic (MBD) analysis has been carried out in commercially available soil-machine interaction tool for the inline and offset track configurations with actual measured seabed soil parameters. The MBD analysis proved that the sinkage and vehicle gradient is significantly increased in the inline track configuration due to disturbance created by the front tracks. The simulation results confirm that the offset track configuration is suitable for the deep sea soil conditions for handling the higher payload of a deep sea mining vehicle.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"116 \",\"pages\":\"Article 100999\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000417\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000417","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Design and multi-body dynamic analysis of inline and offset track configuration in deep-sea mining vehicles for enhanced traction in soft seabed
The deep sea polymetallic nodule mining vehicle maneuverability depends on the vehicle track parameters and track configuration. The traction force offered by the deep sea soil is very limited for the mining vehicle during dynamic operating conditions on the seabed and it is very critical to maneuver against the external resistances. The present study strives to arrive at optimum track parameters for enhancing the traction of the vehicle for the pre-determined seabed conditions. The efficacy of the four tracks in Inline and Offset track configurations on the soft soil has been compared. To improve the traction force estimation, the existing mathematical model was modified with the inclusion of dynamic variation of shear stress-shear displacement characteristics and variation in shear residual displacement concerning the track parameters. The modified mathematical model was solved in a well-established mathematical tool and found that there are 30 percent improvements in the traction force generation for the offset configuration over inline track configuration. The optimum track length to width ratio () was also estimated for the given contact area to configure the vehicle track for improvement of the traction. Further, a Multi-Body Dynamic (MBD) analysis has been carried out in commercially available soil-machine interaction tool for the inline and offset track configurations with actual measured seabed soil parameters. The MBD analysis proved that the sinkage and vehicle gradient is significantly increased in the inline track configuration due to disturbance created by the front tracks. The simulation results confirm that the offset track configuration is suitable for the deep sea soil conditions for handling the higher payload of a deep sea mining vehicle.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.