两步热化学燃料生产循环的重要视角和分析

Alon Lidor , Brendan Bulfin
{"title":"两步热化学燃料生产循环的重要视角和分析","authors":"Alon Lidor ,&nbsp;Brendan Bulfin","doi":"10.1016/j.solcom.2024.100077","DOIUrl":null,"url":null,"abstract":"<div><p>Two-step thermochemical fuel production cycles powered using concentrating solar systems offer a route to convert solar energy to chemical fuels. In this work, we offer a critical assessment of the state of the art, a detailed technical analysis of this technology in terms of theoretical limitations and potential performance, and potential paths forward in the development of these processes. The state of the art for demonstrated reactor systems is analyzed using key performance indicators including energy efficiency, feedstock conversion extent, power output, and volumetric power density. The technical analysis first looks into the theoretical limitations on the cycles’ process conditions and the role of the redox material. This is followed by a detailed thermodynamic analysis of the state-of-the-art <span><math><msub><mtext>CeO</mtext><mn>2</mn></msub></math></span>-based cycle, based on fixed bed mixed flow reactors, which closely represent the reactor designs used in demonstrations. Finally, a scale-up analysis is performed for the <span><math><msub><mtext>CeO</mtext><mn>2</mn></msub></math></span>-based cycle. The results from the theoretical analysis agree well with trends seen in experimental demonstrations of the concept. From the analysis, the low power density of the <span><math><msub><mtext>CeO</mtext><mn>2</mn></msub></math></span>-based cycle is highlighted as a critical design limitation that will seriously restrict further scale-up of this technology. We share perspective on this and other issues, and offer some outlook for future development.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"11 ","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000110/pdfft?md5=d5e11e70eb52f0bce855a6b2d3965272&pid=1-s2.0-S2772940024000110-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A critical perspective and analysis of two-step thermochemical fuel production cycles\",\"authors\":\"Alon Lidor ,&nbsp;Brendan Bulfin\",\"doi\":\"10.1016/j.solcom.2024.100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-step thermochemical fuel production cycles powered using concentrating solar systems offer a route to convert solar energy to chemical fuels. In this work, we offer a critical assessment of the state of the art, a detailed technical analysis of this technology in terms of theoretical limitations and potential performance, and potential paths forward in the development of these processes. The state of the art for demonstrated reactor systems is analyzed using key performance indicators including energy efficiency, feedstock conversion extent, power output, and volumetric power density. The technical analysis first looks into the theoretical limitations on the cycles’ process conditions and the role of the redox material. This is followed by a detailed thermodynamic analysis of the state-of-the-art <span><math><msub><mtext>CeO</mtext><mn>2</mn></msub></math></span>-based cycle, based on fixed bed mixed flow reactors, which closely represent the reactor designs used in demonstrations. Finally, a scale-up analysis is performed for the <span><math><msub><mtext>CeO</mtext><mn>2</mn></msub></math></span>-based cycle. The results from the theoretical analysis agree well with trends seen in experimental demonstrations of the concept. From the analysis, the low power density of the <span><math><msub><mtext>CeO</mtext><mn>2</mn></msub></math></span>-based cycle is highlighted as a critical design limitation that will seriously restrict further scale-up of this technology. We share perspective on this and other issues, and offer some outlook for future development.</p></div>\",\"PeriodicalId\":101173,\"journal\":{\"name\":\"Solar Compass\",\"volume\":\"11 \",\"pages\":\"Article 100077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772940024000110/pdfft?md5=d5e11e70eb52f0bce855a6b2d3965272&pid=1-s2.0-S2772940024000110-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772940024000110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940024000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用聚光太阳能系统驱动的两步热化学燃料生产循环提供了一条将太阳能转化为化学燃料的途径。在这项工作中,我们对技术现状进行了批判性评估,从理论局限性和潜在性能的角度对这项技术进行了详细的技术分析,并提出了开发这些工艺的潜在途径。我们利用关键性能指标,包括能效、原料转化率、功率输出和体积功率密度,对已演示的反应堆系统的技术现状进行了分析。技术分析首先研究了循环工艺条件的理论限制和氧化还原材料的作用。随后,对基于固定床混流反应器的最先进 CeO2 循环进行了详细的热力学分析,该反应器非常接近示范中使用的反应器设计。最后,对基于 CeO2 的循环进行了放大分析。理论分析的结果与该概念实验演示中的趋势非常吻合。分析结果表明,基于 CeO2 循环的低功率密度是一个关键的设计限制,将严重制约该技术的进一步推广。我们分享了对这一问题和其他问题的看法,并对未来发展提出了一些展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A critical perspective and analysis of two-step thermochemical fuel production cycles

Two-step thermochemical fuel production cycles powered using concentrating solar systems offer a route to convert solar energy to chemical fuels. In this work, we offer a critical assessment of the state of the art, a detailed technical analysis of this technology in terms of theoretical limitations and potential performance, and potential paths forward in the development of these processes. The state of the art for demonstrated reactor systems is analyzed using key performance indicators including energy efficiency, feedstock conversion extent, power output, and volumetric power density. The technical analysis first looks into the theoretical limitations on the cycles’ process conditions and the role of the redox material. This is followed by a detailed thermodynamic analysis of the state-of-the-art CeO2-based cycle, based on fixed bed mixed flow reactors, which closely represent the reactor designs used in demonstrations. Finally, a scale-up analysis is performed for the CeO2-based cycle. The results from the theoretical analysis agree well with trends seen in experimental demonstrations of the concept. From the analysis, the low power density of the CeO2-based cycle is highlighted as a critical design limitation that will seriously restrict further scale-up of this technology. We share perspective on this and other issues, and offer some outlook for future development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation studies and experimental validation on solar multi - effect desalination system Experimental analysis on a solar photovoltaic indoor cooker integrated with an energy storage system: A positive step towards clean cooking transition for Sub-Saharan Africa Comparative analysis of bifacial and monofacial FPV system in the UK Improving optical efficiency of linear Fresnel collectors in the Sahel via position and length adjustment Integral ecology approach to life cycle assessment of solar arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1