改进 YOLOv8,用于在 2.5D 复合材料的 X 射线计算机断层扫描图像中分割纤维束,以建立有限元模型

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2024-06-28 DOI:10.1016/j.compositesa.2024.108337
Sheng Zhang , Kaiyu Wang , Huajun Zhang , Tong Wang , Xiguang Gao , Yingdong Song , Fang Wang
{"title":"改进 YOLOv8,用于在 2.5D 复合材料的 X 射线计算机断层扫描图像中分割纤维束,以建立有限元模型","authors":"Sheng Zhang ,&nbsp;Kaiyu Wang ,&nbsp;Huajun Zhang ,&nbsp;Tong Wang ,&nbsp;Xiguang Gao ,&nbsp;Yingdong Song ,&nbsp;Fang Wang","doi":"10.1016/j.compositesa.2024.108337","DOIUrl":null,"url":null,"abstract":"<div><p>It is necessary to segment fiber bundles in the reconstruction of the mesoscopic model of ceramic matrix composites using XCT images. Existing methods have great subjectivity, poor recognition accuracy, and heavy workload. To solve this problem, an improved lightweight YOLOv8 was proposed, which is a deep learning approach. By adding Slim-neck and VanillaNet, the complexity of the model was greatly reduced. Additionally, by replacing the loss function of the model with the Wise-IoU loss function, the ability of feature extraction of the model was improved. The effectiveness of the improved YOLOv8 in fiber bundle identification was demonstrated. Finally, a mesoscopic model was reconstructed by XCT images where fiber bundles were segmented by using the improved YOLOv8. The linear elastic modulus of the material was predicted and the error was found to be small, indicating that the improved YOLOv8 can effectively segment fiber bundles and thus reconstruct a high-precision mesoscopic model.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved YOLOv8 for fiber bundle segmentation in X-ray computed tomography images of 2.5D composites to build the finite element model\",\"authors\":\"Sheng Zhang ,&nbsp;Kaiyu Wang ,&nbsp;Huajun Zhang ,&nbsp;Tong Wang ,&nbsp;Xiguang Gao ,&nbsp;Yingdong Song ,&nbsp;Fang Wang\",\"doi\":\"10.1016/j.compositesa.2024.108337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is necessary to segment fiber bundles in the reconstruction of the mesoscopic model of ceramic matrix composites using XCT images. Existing methods have great subjectivity, poor recognition accuracy, and heavy workload. To solve this problem, an improved lightweight YOLOv8 was proposed, which is a deep learning approach. By adding Slim-neck and VanillaNet, the complexity of the model was greatly reduced. Additionally, by replacing the loss function of the model with the Wise-IoU loss function, the ability of feature extraction of the model was improved. The effectiveness of the improved YOLOv8 in fiber bundle identification was demonstrated. Finally, a mesoscopic model was reconstructed by XCT images where fiber bundles were segmented by using the improved YOLOv8. The linear elastic modulus of the material was predicted and the error was found to be small, indicating that the improved YOLOv8 can effectively segment fiber bundles and thus reconstruct a high-precision mesoscopic model.</p></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24003348\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24003348","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在使用 XCT 图像重建陶瓷基复合材料介观模型时,有必要对纤维束进行分割。现有方法主观性强、识别精度低、工作量大。为解决这一问题,提出了一种改进的轻量级 YOLOv8,这是一种深度学习方法。通过添加 Slim-neck 和 VanillaNet,大大降低了模型的复杂性。此外,通过用 Wise-IoU 损失函数替换模型的损失函数,提高了模型的特征提取能力。改进后的 YOLOv8 在纤维束识别中的有效性得到了验证。最后,通过 XCT 图像重建了介观模型,使用改进的 YOLOv8 对纤维束进行了分割。对材料的线性弹性模量进行了预测,发现误差很小,这表明改进型 YOLOv8 可以有效地分割纤维束,从而重建高精度的介观模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved YOLOv8 for fiber bundle segmentation in X-ray computed tomography images of 2.5D composites to build the finite element model

It is necessary to segment fiber bundles in the reconstruction of the mesoscopic model of ceramic matrix composites using XCT images. Existing methods have great subjectivity, poor recognition accuracy, and heavy workload. To solve this problem, an improved lightweight YOLOv8 was proposed, which is a deep learning approach. By adding Slim-neck and VanillaNet, the complexity of the model was greatly reduced. Additionally, by replacing the loss function of the model with the Wise-IoU loss function, the ability of feature extraction of the model was improved. The effectiveness of the improved YOLOv8 in fiber bundle identification was demonstrated. Finally, a mesoscopic model was reconstructed by XCT images where fiber bundles were segmented by using the improved YOLOv8. The linear elastic modulus of the material was predicted and the error was found to be small, indicating that the improved YOLOv8 can effectively segment fiber bundles and thus reconstruct a high-precision mesoscopic model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
An integrated approach to analyzing matrix-crack-induced stiffness degradation and medium leakage in linerless composite vessels Thermo-mechanical properties of shape-recoverable structural composites via vacuum-assisted resin transfer molding process and in-situ polymerization of poly (tert-butyl acrylate-co-acrylic acid) copolymer Towards yarn-to-yarn friction behavior in various architectures during the manufacturing of engineering woven fabrics Real-time Bayesian inversion in resin transfer moulding using neural surrogates Enhancing the mechanical performance of composite corners through microstructural optimization and geometrical design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1