Fanbo Song , Xue Han , Meng Yuan , Yingchun Li , Ning Hu , Awais Shakoor , Adnan Mustafa , Yidong Wang
{"title":"十年期二氧化碳升高条件下的土壤有机碳:碳库规模不变,但稳定性降低","authors":"Fanbo Song , Xue Han , Meng Yuan , Yingchun Li , Ning Hu , Awais Shakoor , Adnan Mustafa , Yidong Wang","doi":"10.1016/j.csag.2024.100009","DOIUrl":null,"url":null,"abstract":"<div><p>Soil organic carbon (SOC) dynamics under elevated atmospheric CO<sub>2</sub> concentration has been widely reported, however, in which the behaviors of active and passive fractions remain inadequately explored. Here we studied this issue using three pairs of active and passive fractions of SOC under a 10-year free-air CO<sub>2</sub> enrichment experiment (550 ± 17 ppm) in a cropland in the North China Plain. We found that decadal elevated CO<sub>2</sub> increased the root biomass, root exudation rate and microbial biomass, but had little effects on SOC pool size. Elevated CO<sub>2</sub> increased the readily oxidizable organic carbon (ROOC) and particulate organic carbon (POC) due to the increments of root C input, but decreased their paired passive fractions possibly because of the carbon input-induced positive priming effect. Our results indicate the reduced stability of SOC pool under elevated CO<sub>2</sub>. This is significant for better predicting SOC feedback to future climate change.</p></div>","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"1 1","pages":"Article 100009"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950409024000091/pdfft?md5=1dc103810cff5e3808a4f9c89412f6f0&pid=1-s2.0-S2950409024000091-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Soil organic carbon under decadal elevated CO2: Pool size unchanged but stability reduced\",\"authors\":\"Fanbo Song , Xue Han , Meng Yuan , Yingchun Li , Ning Hu , Awais Shakoor , Adnan Mustafa , Yidong Wang\",\"doi\":\"10.1016/j.csag.2024.100009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil organic carbon (SOC) dynamics under elevated atmospheric CO<sub>2</sub> concentration has been widely reported, however, in which the behaviors of active and passive fractions remain inadequately explored. Here we studied this issue using three pairs of active and passive fractions of SOC under a 10-year free-air CO<sub>2</sub> enrichment experiment (550 ± 17 ppm) in a cropland in the North China Plain. We found that decadal elevated CO<sub>2</sub> increased the root biomass, root exudation rate and microbial biomass, but had little effects on SOC pool size. Elevated CO<sub>2</sub> increased the readily oxidizable organic carbon (ROOC) and particulate organic carbon (POC) due to the increments of root C input, but decreased their paired passive fractions possibly because of the carbon input-induced positive priming effect. Our results indicate the reduced stability of SOC pool under elevated CO<sub>2</sub>. This is significant for better predicting SOC feedback to future climate change.</p></div>\",\"PeriodicalId\":100262,\"journal\":{\"name\":\"Climate Smart Agriculture\",\"volume\":\"1 1\",\"pages\":\"Article 100009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950409024000091/pdfft?md5=1dc103810cff5e3808a4f9c89412f6f0&pid=1-s2.0-S2950409024000091-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Smart Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950409024000091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Smart Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950409024000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soil organic carbon under decadal elevated CO2: Pool size unchanged but stability reduced
Soil organic carbon (SOC) dynamics under elevated atmospheric CO2 concentration has been widely reported, however, in which the behaviors of active and passive fractions remain inadequately explored. Here we studied this issue using three pairs of active and passive fractions of SOC under a 10-year free-air CO2 enrichment experiment (550 ± 17 ppm) in a cropland in the North China Plain. We found that decadal elevated CO2 increased the root biomass, root exudation rate and microbial biomass, but had little effects on SOC pool size. Elevated CO2 increased the readily oxidizable organic carbon (ROOC) and particulate organic carbon (POC) due to the increments of root C input, but decreased their paired passive fractions possibly because of the carbon input-induced positive priming effect. Our results indicate the reduced stability of SOC pool under elevated CO2. This is significant for better predicting SOC feedback to future climate change.