{"title":"使用量子蒙特卡洛方法研究轻核的电弱结构的最新进展","authors":"Garrett B. King, Saori Pastore","doi":"10.1146/annurev-nucl-101920-021401","DOIUrl":null,"url":null,"abstract":"Nuclei will play a prominent role in searches for physics beyond the Standard Model as the active material in experiments. In order to reliably interpret new physics signals, one needs an accurate model of the underlying nuclear dynamics. In this review, we discuss recent progress made with quantum Monte Carlo approaches for calculating the electroweak structure of light nuclei. We place particular emphasis on recent β decay, muon capture, neutrinoless double β decay, and electron scattering results.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in the Electroweak Structure of Light Nuclei Using Quantum Monte Carlo Methods\",\"authors\":\"Garrett B. King, Saori Pastore\",\"doi\":\"10.1146/annurev-nucl-101920-021401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclei will play a prominent role in searches for physics beyond the Standard Model as the active material in experiments. In order to reliably interpret new physics signals, one needs an accurate model of the underlying nuclear dynamics. In this review, we discuss recent progress made with quantum Monte Carlo approaches for calculating the electroweak structure of light nuclei. We place particular emphasis on recent β decay, muon capture, neutrinoless double β decay, and electron scattering results.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-101920-021401\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-101920-021401","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent Progress in the Electroweak Structure of Light Nuclei Using Quantum Monte Carlo Methods
Nuclei will play a prominent role in searches for physics beyond the Standard Model as the active material in experiments. In order to reliably interpret new physics signals, one needs an accurate model of the underlying nuclear dynamics. In this review, we discuss recent progress made with quantum Monte Carlo approaches for calculating the electroweak structure of light nuclei. We place particular emphasis on recent β decay, muon capture, neutrinoless double β decay, and electron scattering results.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.