{"title":"生物分类群和生态系统中的同质选择和随机性压倒了异质选择","authors":"Janne Soininen, Caio Graco‐Roza","doi":"10.1111/oik.10517","DOIUrl":null,"url":null,"abstract":"Deterministic factors including homogeneous and heterogeneous selection and stochastic factors jointly shape ecological communities. However, a quantitative synthesis of the factors underlying the balance among different assembly processes is lacking. Here, we synthesized data from 149 datasets covering major biotic groups and ecosystem types globally. We used a null model approach based on Raup–Crick dissimilarities and Bayesian meta‐regression to analyze the data. We found that communities were more under homogeneous selection than heterogeneous selection across biotic taxa and ecosystems. Environment selected species homogeneously more often at small scales while heterogeneously more often at large scales. Stochasticity also showed scale‐dependence as stochastic community assembly increased with study scale. Homogeneous and heterogeneous selection were strongest at high latitudes while stochastic factors were strongest in tropics. Marine systems had the highest degree of homogeneous selection and the lowest stochasticity. We provide the first analysis of community assembly across taxa and ecosystems which should be important for a better understanding of how communities respond to environmental change.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"23 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous selection and stochasticity overrule heterogeneous selection across biotic taxa and ecosystems\",\"authors\":\"Janne Soininen, Caio Graco‐Roza\",\"doi\":\"10.1111/oik.10517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic factors including homogeneous and heterogeneous selection and stochastic factors jointly shape ecological communities. However, a quantitative synthesis of the factors underlying the balance among different assembly processes is lacking. Here, we synthesized data from 149 datasets covering major biotic groups and ecosystem types globally. We used a null model approach based on Raup–Crick dissimilarities and Bayesian meta‐regression to analyze the data. We found that communities were more under homogeneous selection than heterogeneous selection across biotic taxa and ecosystems. Environment selected species homogeneously more often at small scales while heterogeneously more often at large scales. Stochasticity also showed scale‐dependence as stochastic community assembly increased with study scale. Homogeneous and heterogeneous selection were strongest at high latitudes while stochastic factors were strongest in tropics. Marine systems had the highest degree of homogeneous selection and the lowest stochasticity. We provide the first analysis of community assembly across taxa and ecosystems which should be important for a better understanding of how communities respond to environmental change.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.10517\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10517","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Homogeneous selection and stochasticity overrule heterogeneous selection across biotic taxa and ecosystems
Deterministic factors including homogeneous and heterogeneous selection and stochastic factors jointly shape ecological communities. However, a quantitative synthesis of the factors underlying the balance among different assembly processes is lacking. Here, we synthesized data from 149 datasets covering major biotic groups and ecosystem types globally. We used a null model approach based on Raup–Crick dissimilarities and Bayesian meta‐regression to analyze the data. We found that communities were more under homogeneous selection than heterogeneous selection across biotic taxa and ecosystems. Environment selected species homogeneously more often at small scales while heterogeneously more often at large scales. Stochasticity also showed scale‐dependence as stochastic community assembly increased with study scale. Homogeneous and heterogeneous selection were strongest at high latitudes while stochastic factors were strongest in tropics. Marine systems had the highest degree of homogeneous selection and the lowest stochasticity. We provide the first analysis of community assembly across taxa and ecosystems which should be important for a better understanding of how communities respond to environmental change.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.