{"title":"利用信息熵选择训练数据:应用于中国北方农村居民采暖负荷建模","authors":"Li-gai Kang, Hao Li, Zhi-chao Wang, Dong-xiang Sun, Jin-zhu Wang, Yang Yang, Xu Zhang","doi":"10.1007/s11770-024-1120-9","DOIUrl":null,"url":null,"abstract":"<p>The selection of input variables and their amount has been an important issue in big data load forecasting. Taking heating load forecasting as an example, this paper proposed a method for data filtering based on information entropy. First, the heating data from an air source heat pump system adopted by a rural residence in northern China were employed. Moreover, the training data were classified based on linear or nonlinear variations of outdoor temperature and its changing ranges, while the validation data included three different types of weather conditions, namely, cold, cool, and mild. Then, the information entropy under 2-h, 4-h, 6-h and 8-h training window was quantified to be 1.811, 1.839, 1.877 and 1.856, respectively. For the employed rural residence, an equivalent three-resistance and two-capacity model was established to validate the effectiveness of the training window. Using the derived optimal thermal resistance and capacity, the various selection of outdoor temperature variation trend and range were compared and optimized. Results showed that 6 h of training data had the maximum information entropy and the most abundant information, the minimum errors between actual and forecasting data were observed under 6 h of training data, linear change, and lower outdoor temperature. The mean absolute percentage errors for the load forecasting of three typical days were 5.63%, 8.46%, and 12.10%, respectively.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training data selection using information entropy: Application to heating load modeling of rural residence in northern China\",\"authors\":\"Li-gai Kang, Hao Li, Zhi-chao Wang, Dong-xiang Sun, Jin-zhu Wang, Yang Yang, Xu Zhang\",\"doi\":\"10.1007/s11770-024-1120-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The selection of input variables and their amount has been an important issue in big data load forecasting. Taking heating load forecasting as an example, this paper proposed a method for data filtering based on information entropy. First, the heating data from an air source heat pump system adopted by a rural residence in northern China were employed. Moreover, the training data were classified based on linear or nonlinear variations of outdoor temperature and its changing ranges, while the validation data included three different types of weather conditions, namely, cold, cool, and mild. Then, the information entropy under 2-h, 4-h, 6-h and 8-h training window was quantified to be 1.811, 1.839, 1.877 and 1.856, respectively. For the employed rural residence, an equivalent three-resistance and two-capacity model was established to validate the effectiveness of the training window. Using the derived optimal thermal resistance and capacity, the various selection of outdoor temperature variation trend and range were compared and optimized. Results showed that 6 h of training data had the maximum information entropy and the most abundant information, the minimum errors between actual and forecasting data were observed under 6 h of training data, linear change, and lower outdoor temperature. The mean absolute percentage errors for the load forecasting of three typical days were 5.63%, 8.46%, and 12.10%, respectively.</p>\",\"PeriodicalId\":55500,\"journal\":{\"name\":\"Applied Geophysics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11770-024-1120-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-024-1120-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Training data selection using information entropy: Application to heating load modeling of rural residence in northern China
The selection of input variables and their amount has been an important issue in big data load forecasting. Taking heating load forecasting as an example, this paper proposed a method for data filtering based on information entropy. First, the heating data from an air source heat pump system adopted by a rural residence in northern China were employed. Moreover, the training data were classified based on linear or nonlinear variations of outdoor temperature and its changing ranges, while the validation data included three different types of weather conditions, namely, cold, cool, and mild. Then, the information entropy under 2-h, 4-h, 6-h and 8-h training window was quantified to be 1.811, 1.839, 1.877 and 1.856, respectively. For the employed rural residence, an equivalent three-resistance and two-capacity model was established to validate the effectiveness of the training window. Using the derived optimal thermal resistance and capacity, the various selection of outdoor temperature variation trend and range were compared and optimized. Results showed that 6 h of training data had the maximum information entropy and the most abundant information, the minimum errors between actual and forecasting data were observed under 6 h of training data, linear change, and lower outdoor temperature. The mean absolute percentage errors for the load forecasting of three typical days were 5.63%, 8.46%, and 12.10%, respectively.
期刊介绍:
The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists.
The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.