{"title":"迈向材料基因组大数据:基于区块链的安全存储和高效检索方法","authors":"Ran Wang;Cheng Xu;Xiaotong Zhang","doi":"10.1109/TPDS.2024.3426275","DOIUrl":null,"url":null,"abstract":"With the advent of the era of data-driven material R&D, more and more countries have begun to build material Big Data sharing platforms to support the design and R&D of new materials. In the application process of material Big Data sharing platforms, storage and retrieval are the basis of resource mining and analysis. However, achieving efficient storage and recovery is not accessible due to the multimodality, isomerization, discrete and other characteristics of material data. At the same time, due to the lack of security mechanisms, how to ensure the integrity and reliability of the original data is also a significant problem faced by researchers. Given these issues, this paper proposes a blockchain-based secure storage and efficient retrieval scheme. Introducing the Improved Merkle Tree (MMT) structure into the block, the transaction data on the chain and the original data in the off-chain cloud are mapped through the material data template. Experimental results show that our proposed MMT structure has no significant impact on the block creation efficiency while improving the retrieval efficiency. At the same time, MMT is superior to state-of-the-art retrieval methods in terms of efficiency, especially regarding range retrieval. The method proposed in this paper is more suitable for the application needs of the material Big Data sharing platform, and the retrieval efficiency has also been significantly improved.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 9","pages":"1630-1643"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Materials Genome Big-Data: A Blockchain-Based Secure Storage and Efficient Retrieval Method\",\"authors\":\"Ran Wang;Cheng Xu;Xiaotong Zhang\",\"doi\":\"10.1109/TPDS.2024.3426275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of the era of data-driven material R&D, more and more countries have begun to build material Big Data sharing platforms to support the design and R&D of new materials. In the application process of material Big Data sharing platforms, storage and retrieval are the basis of resource mining and analysis. However, achieving efficient storage and recovery is not accessible due to the multimodality, isomerization, discrete and other characteristics of material data. At the same time, due to the lack of security mechanisms, how to ensure the integrity and reliability of the original data is also a significant problem faced by researchers. Given these issues, this paper proposes a blockchain-based secure storage and efficient retrieval scheme. Introducing the Improved Merkle Tree (MMT) structure into the block, the transaction data on the chain and the original data in the off-chain cloud are mapped through the material data template. Experimental results show that our proposed MMT structure has no significant impact on the block creation efficiency while improving the retrieval efficiency. At the same time, MMT is superior to state-of-the-art retrieval methods in terms of efficiency, especially regarding range retrieval. The method proposed in this paper is more suitable for the application needs of the material Big Data sharing platform, and the retrieval efficiency has also been significantly improved.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 9\",\"pages\":\"1630-1643\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10592662/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10592662/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Toward Materials Genome Big-Data: A Blockchain-Based Secure Storage and Efficient Retrieval Method
With the advent of the era of data-driven material R&D, more and more countries have begun to build material Big Data sharing platforms to support the design and R&D of new materials. In the application process of material Big Data sharing platforms, storage and retrieval are the basis of resource mining and analysis. However, achieving efficient storage and recovery is not accessible due to the multimodality, isomerization, discrete and other characteristics of material data. At the same time, due to the lack of security mechanisms, how to ensure the integrity and reliability of the original data is also a significant problem faced by researchers. Given these issues, this paper proposes a blockchain-based secure storage and efficient retrieval scheme. Introducing the Improved Merkle Tree (MMT) structure into the block, the transaction data on the chain and the original data in the off-chain cloud are mapped through the material data template. Experimental results show that our proposed MMT structure has no significant impact on the block creation efficiency while improving the retrieval efficiency. At the same time, MMT is superior to state-of-the-art retrieval methods in terms of efficiency, especially regarding range retrieval. The method proposed in this paper is more suitable for the application needs of the material Big Data sharing platform, and the retrieval efficiency has also been significantly improved.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.