{"title":"DeepEPhishNet:利用单词嵌入算法进行电子邮件网络钓鱼检测的深度学习框架","authors":"M Somesha, Alwyn Roshan Pais","doi":"10.1007/s12046-024-02538-4","DOIUrl":null,"url":null,"abstract":"<p>Email phishing is a social engineering scheme that uses spoofed emails intended to trick the user into disclosing legitimate business and personal credentials. Many phishing email detection techniques exist based on machine learning, deep learning, and word embedding. In this paper, we propose a new technique for the detection of phishing emails using word embedding (Word2Vec, FastText, and TF-IDF) and deep learning techniques (DNN and BiLSTM network). Our proposed technique makes use of only four header based (From, Returnpath, Subject, Message-ID) features of the emails for the email classification. We applied several word embeddings for the evaluation of our models. From the experimental evaluation, we observed that the DNN model with FastText-SkipGram achieved an accuracy of 99.52% and BiLSTM model with FastText-SkipGram achieved an accuracy of 99.42%. Among these two techniques, DNN outperformed BiLSTM using the same word embedding (FastText-SkipGram) techniques with an accuracy of 99.52%.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepEPhishNet: a deep learning framework for email phishing detection using word embedding algorithms\",\"authors\":\"M Somesha, Alwyn Roshan Pais\",\"doi\":\"10.1007/s12046-024-02538-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Email phishing is a social engineering scheme that uses spoofed emails intended to trick the user into disclosing legitimate business and personal credentials. Many phishing email detection techniques exist based on machine learning, deep learning, and word embedding. In this paper, we propose a new technique for the detection of phishing emails using word embedding (Word2Vec, FastText, and TF-IDF) and deep learning techniques (DNN and BiLSTM network). Our proposed technique makes use of only four header based (From, Returnpath, Subject, Message-ID) features of the emails for the email classification. We applied several word embeddings for the evaluation of our models. From the experimental evaluation, we observed that the DNN model with FastText-SkipGram achieved an accuracy of 99.52% and BiLSTM model with FastText-SkipGram achieved an accuracy of 99.42%. Among these two techniques, DNN outperformed BiLSTM using the same word embedding (FastText-SkipGram) techniques with an accuracy of 99.52%.</p>\",\"PeriodicalId\":21498,\"journal\":{\"name\":\"Sādhanā\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sādhanā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12046-024-02538-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02538-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepEPhishNet: a deep learning framework for email phishing detection using word embedding algorithms
Email phishing is a social engineering scheme that uses spoofed emails intended to trick the user into disclosing legitimate business and personal credentials. Many phishing email detection techniques exist based on machine learning, deep learning, and word embedding. In this paper, we propose a new technique for the detection of phishing emails using word embedding (Word2Vec, FastText, and TF-IDF) and deep learning techniques (DNN and BiLSTM network). Our proposed technique makes use of only four header based (From, Returnpath, Subject, Message-ID) features of the emails for the email classification. We applied several word embeddings for the evaluation of our models. From the experimental evaluation, we observed that the DNN model with FastText-SkipGram achieved an accuracy of 99.52% and BiLSTM model with FastText-SkipGram achieved an accuracy of 99.42%. Among these two techniques, DNN outperformed BiLSTM using the same word embedding (FastText-SkipGram) techniques with an accuracy of 99.52%.