DeepEPhishNet:利用单词嵌入算法进行电子邮件网络钓鱼检测的深度学习框架

M Somesha, Alwyn Roshan Pais
{"title":"DeepEPhishNet:利用单词嵌入算法进行电子邮件网络钓鱼检测的深度学习框架","authors":"M Somesha, Alwyn Roshan Pais","doi":"10.1007/s12046-024-02538-4","DOIUrl":null,"url":null,"abstract":"<p>Email phishing is a social engineering scheme that uses spoofed emails intended to trick the user into disclosing legitimate business and personal credentials. Many phishing email detection techniques exist based on machine learning, deep learning, and word embedding. In this paper, we propose a new technique for the detection of phishing emails using word embedding (Word2Vec, FastText, and TF-IDF) and deep learning techniques (DNN and BiLSTM network). Our proposed technique makes use of only four header based (From, Returnpath, Subject, Message-ID) features of the emails for the email classification. We applied several word embeddings for the evaluation of our models. From the experimental evaluation, we observed that the DNN model with FastText-SkipGram achieved an accuracy of 99.52% and BiLSTM model with FastText-SkipGram achieved an accuracy of 99.42%. Among these two techniques, DNN outperformed BiLSTM using the same word embedding (FastText-SkipGram) techniques with an accuracy of 99.52%.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepEPhishNet: a deep learning framework for email phishing detection using word embedding algorithms\",\"authors\":\"M Somesha, Alwyn Roshan Pais\",\"doi\":\"10.1007/s12046-024-02538-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Email phishing is a social engineering scheme that uses spoofed emails intended to trick the user into disclosing legitimate business and personal credentials. Many phishing email detection techniques exist based on machine learning, deep learning, and word embedding. In this paper, we propose a new technique for the detection of phishing emails using word embedding (Word2Vec, FastText, and TF-IDF) and deep learning techniques (DNN and BiLSTM network). Our proposed technique makes use of only four header based (From, Returnpath, Subject, Message-ID) features of the emails for the email classification. We applied several word embeddings for the evaluation of our models. From the experimental evaluation, we observed that the DNN model with FastText-SkipGram achieved an accuracy of 99.52% and BiLSTM model with FastText-SkipGram achieved an accuracy of 99.42%. Among these two techniques, DNN outperformed BiLSTM using the same word embedding (FastText-SkipGram) techniques with an accuracy of 99.52%.</p>\",\"PeriodicalId\":21498,\"journal\":{\"name\":\"Sādhanā\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sādhanā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12046-024-02538-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02538-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子邮件网络钓鱼是一种社会工程学计划,它利用欺骗性电子邮件诱骗用户披露合法的企业和个人凭证。目前存在许多基于机器学习、深度学习和词嵌入的网络钓鱼电子邮件检测技术。在本文中,我们提出了一种使用单词嵌入(Word2Vec、FastText 和 TF-IDF)和深度学习技术(DNN 和 BiLSTM 网络)检测网络钓鱼电子邮件的新技术。我们提出的技术仅利用电子邮件的四个基于标题的特征(发件人、回件路径、主题、邮件 ID)来进行电子邮件分类。我们应用了多个词嵌入来评估我们的模型。通过实验评估,我们发现使用 FastText-SkipGram 的 DNN 模型的准确率达到了 99.52%,使用 FastText-SkipGram 的 BiLSTM 模型的准确率达到了 99.42%。在这两种技术中,使用相同的词嵌入(FastText-SkipGram)技术,DNN 的准确率为 99.52%,优于 BiLSTM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepEPhishNet: a deep learning framework for email phishing detection using word embedding algorithms

Email phishing is a social engineering scheme that uses spoofed emails intended to trick the user into disclosing legitimate business and personal credentials. Many phishing email detection techniques exist based on machine learning, deep learning, and word embedding. In this paper, we propose a new technique for the detection of phishing emails using word embedding (Word2Vec, FastText, and TF-IDF) and deep learning techniques (DNN and BiLSTM network). Our proposed technique makes use of only four header based (From, Returnpath, Subject, Message-ID) features of the emails for the email classification. We applied several word embeddings for the evaluation of our models. From the experimental evaluation, we observed that the DNN model with FastText-SkipGram achieved an accuracy of 99.52% and BiLSTM model with FastText-SkipGram achieved an accuracy of 99.42%. Among these two techniques, DNN outperformed BiLSTM using the same word embedding (FastText-SkipGram) techniques with an accuracy of 99.52%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Buckling performance optimization of sub-stiffened composite panels with straight and curvilinear sub-stiffeners Transformer-based Pouranic topic classification in Indian mythology Influence of non-stoichiometric solutions on the THF hydrate growth: chemical affinity modelling and visualization Development and analysis of Hastelloy-X alloy butt joint made by laser beam welding Comparative analysis of a remotely-controlled wetland paddy seeder and conventional drum seeder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1