K. L. Chai, I. M. Noor, Tian Khoon Lee, M. S. Su’ait, A. Ahmad
{"title":"麻风树油衍生聚(氨基甲酸乙酯)凝胶聚合物电解质作为光电化学电池准固态溶液的光电性能","authors":"K. L. Chai, I. M. Noor, Tian Khoon Lee, M. S. Su’ait, A. Ahmad","doi":"10.1007/s11581-024-05682-3","DOIUrl":null,"url":null,"abstract":"<div><p>A biopolymer derived from <i>Jatropha</i> oil-based poly(ethyl carbamate) (PUA) has been used as gel polymer electrolyte (GPE) in optoelectronic devices and photoelectrochemical cells (PEC) as photodiode devices. The quasi-solid-state photodiode device was characterized through photo current–voltage analysis, photogenerated charge carrier dynamic analysis, electrochemical impedance spectroscopy (EIS) analysis, and voltammetry analysis. Sample A2 biopolymer electrolyte (95 wt.% PUA, 5 wt.% LiI, 5 wt.% I<sub>2</sub>) revealed the highest ionic conductivity (2.34 ± 0.01) × 10<sup>−4</sup> S cm<sup>−1</sup> and power conversion efficiency (5.09 ± 0.23) %, along with the highest short-circuit current density (17.80 ± 0.41) mA cm<sup>−2</sup>, open-circuit voltage (0.52 ± 0.01) V, and fill factor (0.55 ± 0.04). respectively. Moreover, sample A2 biopolymer electrolyte featuring a triiodide ion diffusivity of 1.82 × 10<sup>−8</sup> cm<sup>2</sup> s<sup>−1</sup> demonstrated electrochemical stability up to 2.1 V and remained functional for a duration of 2000 cycles. The charge dynamic mechanism in the PEC proved that sample A2 biopolymer electrolyte recorded lowest values of <i>R</i><sub>s</sub>, <i>R</i><sub>pt</sub>, <i>R</i><sub>ct</sub>, and <i>R</i><sub>d</sub> of (18.60 ± 0.01) Ω, (1.20 ± 0.01) Ω, (10.0 ± 0.01) Ω, and (11.50 ± 0.01) Ω, respectively.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optoelectronic performance of Jatropha oil-derived poly(ethyl carbamate) gel polymer electrolyte as quasi-solid-state solution for photoelectrochemical cells\",\"authors\":\"K. L. Chai, I. M. Noor, Tian Khoon Lee, M. S. Su’ait, A. Ahmad\",\"doi\":\"10.1007/s11581-024-05682-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A biopolymer derived from <i>Jatropha</i> oil-based poly(ethyl carbamate) (PUA) has been used as gel polymer electrolyte (GPE) in optoelectronic devices and photoelectrochemical cells (PEC) as photodiode devices. The quasi-solid-state photodiode device was characterized through photo current–voltage analysis, photogenerated charge carrier dynamic analysis, electrochemical impedance spectroscopy (EIS) analysis, and voltammetry analysis. Sample A2 biopolymer electrolyte (95 wt.% PUA, 5 wt.% LiI, 5 wt.% I<sub>2</sub>) revealed the highest ionic conductivity (2.34 ± 0.01) × 10<sup>−4</sup> S cm<sup>−1</sup> and power conversion efficiency (5.09 ± 0.23) %, along with the highest short-circuit current density (17.80 ± 0.41) mA cm<sup>−2</sup>, open-circuit voltage (0.52 ± 0.01) V, and fill factor (0.55 ± 0.04). respectively. Moreover, sample A2 biopolymer electrolyte featuring a triiodide ion diffusivity of 1.82 × 10<sup>−8</sup> cm<sup>2</sup> s<sup>−1</sup> demonstrated electrochemical stability up to 2.1 V and remained functional for a duration of 2000 cycles. The charge dynamic mechanism in the PEC proved that sample A2 biopolymer electrolyte recorded lowest values of <i>R</i><sub>s</sub>, <i>R</i><sub>pt</sub>, <i>R</i><sub>ct</sub>, and <i>R</i><sub>d</sub> of (18.60 ± 0.01) Ω, (1.20 ± 0.01) Ω, (10.0 ± 0.01) Ω, and (11.50 ± 0.01) Ω, respectively.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-05682-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05682-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Optoelectronic performance of Jatropha oil-derived poly(ethyl carbamate) gel polymer electrolyte as quasi-solid-state solution for photoelectrochemical cells
A biopolymer derived from Jatropha oil-based poly(ethyl carbamate) (PUA) has been used as gel polymer electrolyte (GPE) in optoelectronic devices and photoelectrochemical cells (PEC) as photodiode devices. The quasi-solid-state photodiode device was characterized through photo current–voltage analysis, photogenerated charge carrier dynamic analysis, electrochemical impedance spectroscopy (EIS) analysis, and voltammetry analysis. Sample A2 biopolymer electrolyte (95 wt.% PUA, 5 wt.% LiI, 5 wt.% I2) revealed the highest ionic conductivity (2.34 ± 0.01) × 10−4 S cm−1 and power conversion efficiency (5.09 ± 0.23) %, along with the highest short-circuit current density (17.80 ± 0.41) mA cm−2, open-circuit voltage (0.52 ± 0.01) V, and fill factor (0.55 ± 0.04). respectively. Moreover, sample A2 biopolymer electrolyte featuring a triiodide ion diffusivity of 1.82 × 10−8 cm2 s−1 demonstrated electrochemical stability up to 2.1 V and remained functional for a duration of 2000 cycles. The charge dynamic mechanism in the PEC proved that sample A2 biopolymer electrolyte recorded lowest values of Rs, Rpt, Rct, and Rd of (18.60 ± 0.01) Ω, (1.20 ± 0.01) Ω, (10.0 ± 0.01) Ω, and (11.50 ± 0.01) Ω, respectively.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.