通过表面调制等离子体策略促进电催化氧进化的定制异质结构 Ni3N-NiO 纳米框架

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-07-11 DOI:10.1007/s12274-024-6670-x
Bo Ouyang, Haonan Qin, Chao Sun, Yilin Deng, Ang Li, Jipeng Zhu, Erjun Kan, Rajdeep Singh Rawat
{"title":"通过表面调制等离子体策略促进电催化氧进化的定制异质结构 Ni3N-NiO 纳米框架","authors":"Bo Ouyang,&nbsp;Haonan Qin,&nbsp;Chao Sun,&nbsp;Yilin Deng,&nbsp;Ang Li,&nbsp;Jipeng Zhu,&nbsp;Erjun Kan,&nbsp;Rajdeep Singh Rawat","doi":"10.1007/s12274-024-6670-x","DOIUrl":null,"url":null,"abstract":"<div><p>The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H<sub>2</sub> through heterostructure formation. While chemical methods have been explored extensively for this purpose, plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks. However, the conventional plasma approach introduces complexities, leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment. In our pursuit of heterostructures with optimized oxygen evolution reaction (OER) behavior, we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni<sub>3</sub>N–NiO heterostructure (hNiNO). By meticulously controlling the surface heating process during plasma processing, such approach allows for the streamlined fabrication of hNiNO nano-frameworks. The resulting nano-framework exhibits outstanding catalytic performance, as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm<sup>−2</sup>, in an alkaline environment. This stands in stark contrast to the performance of NiO-covered Ni<sub>3</sub>N fabricated using the conventional plasma method (sNiNO). <i>Operando</i> plasma diagnostics, coupled with numerical simulations, further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni<sub>3</sub>N–NiO nanostructure, highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 9","pages":"7909 - 7917"},"PeriodicalIF":9.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored heterostructured Ni3N–NiO nano-frameworks for boosting electrocatalytic oxygen evolution via surface-modulated plasma strategy\",\"authors\":\"Bo Ouyang,&nbsp;Haonan Qin,&nbsp;Chao Sun,&nbsp;Yilin Deng,&nbsp;Ang Li,&nbsp;Jipeng Zhu,&nbsp;Erjun Kan,&nbsp;Rajdeep Singh Rawat\",\"doi\":\"10.1007/s12274-024-6670-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H<sub>2</sub> through heterostructure formation. While chemical methods have been explored extensively for this purpose, plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks. However, the conventional plasma approach introduces complexities, leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment. In our pursuit of heterostructures with optimized oxygen evolution reaction (OER) behavior, we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni<sub>3</sub>N–NiO heterostructure (hNiNO). By meticulously controlling the surface heating process during plasma processing, such approach allows for the streamlined fabrication of hNiNO nano-frameworks. The resulting nano-framework exhibits outstanding catalytic performance, as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm<sup>−2</sup>, in an alkaline environment. This stands in stark contrast to the performance of NiO-covered Ni<sub>3</sub>N fabricated using the conventional plasma method (sNiNO). <i>Operando</i> plasma diagnostics, coupled with numerical simulations, further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni<sub>3</sub>N–NiO nanostructure, highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 9\",\"pages\":\"7909 - 7917\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6670-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6670-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过异质结构的形成,相的便捷重组在提高 H2 的电催化生产方面发挥着关键作用。虽然化学方法已在这方面进行了广泛探索,但基于等离子体的技术为实现异质结构纳米框架提供了一条前景广阔的途径。然而,传统的等离子体方法带来了复杂性,导致制造过程需要多个步骤,并且由于错综复杂的相互作用环境,在精确控制部分表面结构调制方面存在挑战。为了追求具有优化氧进化反应(OER)行为的异质结构,我们设计了一种简便的辅助绝缘体封闭等离子体系统,以直接获得 Ni3N-NiO 异质结构(hNiNO)。通过精心控制等离子体处理过程中的表面加热过程,这种方法可以简化 hNiNO 纳米框架的制造过程。在碱性环境中,当电流密度为 10 mA-cm-2 时,纳米框架的过电位为 320 mV。这与使用传统等离子体方法制造的覆盖 NiO 的 Ni3N(sNiNO)的性能形成了鲜明对比。操作性等离子体诊断与数值模拟相结合,进一步证实了辅助绝缘体对基底的限制导致的表面加热对典型等离子体参数和 Ni3N-NiO 纳米结构形成的影响,突出了控制表面温度在制造高性能异质结构电催化剂中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailored heterostructured Ni3N–NiO nano-frameworks for boosting electrocatalytic oxygen evolution via surface-modulated plasma strategy

The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation. While chemical methods have been explored extensively for this purpose, plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks. However, the conventional plasma approach introduces complexities, leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment. In our pursuit of heterostructures with optimized oxygen evolution reaction (OER) behavior, we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni3N–NiO heterostructure (hNiNO). By meticulously controlling the surface heating process during plasma processing, such approach allows for the streamlined fabrication of hNiNO nano-frameworks. The resulting nano-framework exhibits outstanding catalytic performance, as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm−2, in an alkaline environment. This stands in stark contrast to the performance of NiO-covered Ni3N fabricated using the conventional plasma method (sNiNO). Operando plasma diagnostics, coupled with numerical simulations, further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni3N–NiO nanostructure, highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1