{"title":"改进单位承诺经济学:可再生能源和储备预测的附加定制工具","authors":"Xianbang Chen;Yikui Liu;Lei Wu","doi":"10.1109/TSTE.2024.3426337","DOIUrl":null,"url":null,"abstract":"Generally, day-ahead unit commitment (UC) is conducted in a predict-then-optimize process: it starts by predicting the renewable energy source (RES) availability and system reserve requirements; given the predictions, the UC model is then optimized to determine the economic operation plans. In fact, predictions within the process are \n<italic>raw</i>\n. In other words, if the predictions are further tailored to assist UC in making the economic operation plans against realizations of the RES and reserve requirements, UC economics will benefit significantly. To this end, this paper presents a cost-oriented tailor of RES-and-reserve predictions for UC, deployed as an add-on to the predict-then-optimize process. The RES-and-reserve tailor is trained by solving a bi-level mixed-integer programming model: the upper level trains the tailor based on its induced operating cost; the lower level, given tailored predictions, mimics the system operation process and feeds the induced operating cost back to the upper level; finally, the upper level evaluates the training quality according to the fed-back cost. Through this training, the tailor learns to customize the raw predictions into cost-oriented predictions. Moreover, the tailor can be embedded into the existing predict-then-optimize process as an add-on, improving the UC economics. Lastly, the presented method is compared to traditional, binary-relaxing, neural network-based, stochastic, and robust methods.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2547-2566"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Improving Unit Commitment Economics: An Add-On Tailor for Renewable Energy and Reserve Predictions\",\"authors\":\"Xianbang Chen;Yikui Liu;Lei Wu\",\"doi\":\"10.1109/TSTE.2024.3426337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, day-ahead unit commitment (UC) is conducted in a predict-then-optimize process: it starts by predicting the renewable energy source (RES) availability and system reserve requirements; given the predictions, the UC model is then optimized to determine the economic operation plans. In fact, predictions within the process are \\n<italic>raw</i>\\n. In other words, if the predictions are further tailored to assist UC in making the economic operation plans against realizations of the RES and reserve requirements, UC economics will benefit significantly. To this end, this paper presents a cost-oriented tailor of RES-and-reserve predictions for UC, deployed as an add-on to the predict-then-optimize process. The RES-and-reserve tailor is trained by solving a bi-level mixed-integer programming model: the upper level trains the tailor based on its induced operating cost; the lower level, given tailored predictions, mimics the system operation process and feeds the induced operating cost back to the upper level; finally, the upper level evaluates the training quality according to the fed-back cost. Through this training, the tailor learns to customize the raw predictions into cost-oriented predictions. Moreover, the tailor can be embedded into the existing predict-then-optimize process as an add-on, improving the UC economics. Lastly, the presented method is compared to traditional, binary-relaxing, neural network-based, stochastic, and robust methods.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 4\",\"pages\":\"2547-2566\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10592660/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10592660/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Towards Improving Unit Commitment Economics: An Add-On Tailor for Renewable Energy and Reserve Predictions
Generally, day-ahead unit commitment (UC) is conducted in a predict-then-optimize process: it starts by predicting the renewable energy source (RES) availability and system reserve requirements; given the predictions, the UC model is then optimized to determine the economic operation plans. In fact, predictions within the process are
raw
. In other words, if the predictions are further tailored to assist UC in making the economic operation plans against realizations of the RES and reserve requirements, UC economics will benefit significantly. To this end, this paper presents a cost-oriented tailor of RES-and-reserve predictions for UC, deployed as an add-on to the predict-then-optimize process. The RES-and-reserve tailor is trained by solving a bi-level mixed-integer programming model: the upper level trains the tailor based on its induced operating cost; the lower level, given tailored predictions, mimics the system operation process and feeds the induced operating cost back to the upper level; finally, the upper level evaluates the training quality according to the fed-back cost. Through this training, the tailor learns to customize the raw predictions into cost-oriented predictions. Moreover, the tailor can be embedded into the existing predict-then-optimize process as an add-on, improving the UC economics. Lastly, the presented method is compared to traditional, binary-relaxing, neural network-based, stochastic, and robust methods.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.