{"title":"T5G2P:基于词素到音素转换的文本到文本转换器","authors":"Markéta Řezáčková;Daniel Tihelka;Jindřich Matoušek","doi":"10.1109/TASLP.2024.3426332","DOIUrl":null,"url":null,"abstract":"The present paper explores the use of several deep neural network architectures to carry out a grapheme-to-phoneme (G2P) conversion, aiming to find a universal and language-independent approach to the task. The models explored are trained on whole sentences in order to automatically capture cross-word context (such as voicedness assimilation) if it exists in the given language. Four different languages, English, Czech, Russian, and German, were chosen due to their different nature and requirements for the G2P task. Ultimately, the Text-to-Text Transfer Transformer (T5) based model achieved very high conversion accuracy on all the tested languages. Also, it exceeded the accuracy reached by a similar system, when trained on a public LibriSpeech database.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"3466-3476"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T5G2P: Text-to-Text Transfer Transformer Based Grapheme-to-Phoneme Conversion\",\"authors\":\"Markéta Řezáčková;Daniel Tihelka;Jindřich Matoušek\",\"doi\":\"10.1109/TASLP.2024.3426332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper explores the use of several deep neural network architectures to carry out a grapheme-to-phoneme (G2P) conversion, aiming to find a universal and language-independent approach to the task. The models explored are trained on whole sentences in order to automatically capture cross-word context (such as voicedness assimilation) if it exists in the given language. Four different languages, English, Czech, Russian, and German, were chosen due to their different nature and requirements for the G2P task. Ultimately, the Text-to-Text Transfer Transformer (T5) based model achieved very high conversion accuracy on all the tested languages. Also, it exceeded the accuracy reached by a similar system, when trained on a public LibriSpeech database.\",\"PeriodicalId\":13332,\"journal\":{\"name\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"volume\":\"32 \",\"pages\":\"3466-3476\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10592637/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10592637/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
T5G2P: Text-to-Text Transfer Transformer Based Grapheme-to-Phoneme Conversion
The present paper explores the use of several deep neural network architectures to carry out a grapheme-to-phoneme (G2P) conversion, aiming to find a universal and language-independent approach to the task. The models explored are trained on whole sentences in order to automatically capture cross-word context (such as voicedness assimilation) if it exists in the given language. Four different languages, English, Czech, Russian, and German, were chosen due to their different nature and requirements for the G2P task. Ultimately, the Text-to-Text Transfer Transformer (T5) based model achieved very high conversion accuracy on all the tested languages. Also, it exceeded the accuracy reached by a similar system, when trained on a public LibriSpeech database.
期刊介绍:
The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.