结合运行模态分析算法确定实际离心压缩机的模态参数

Leandro O. Zague, Daniel A. Castello, Carlos F. T. Matt
{"title":"结合运行模态分析算法确定实际离心压缩机的模态参数","authors":"Leandro O. Zague, Daniel A. Castello, Carlos F. T. Matt","doi":"arxiv-2407.07273","DOIUrl":null,"url":null,"abstract":"The novelty of the current work is precisely to propose a statistical\nprocedure to combine estimates of the modal parameters provided by any set of\nOperational Modal Analysis (OMA) algorithms so as to avoid preference for a\nparticular one and also to derive an approximate joint probability distribution\nof the modal parameters, from which engineering statistics of interest such as\nmean value and variance are readily provided. The effectiveness of the proposed\nstrategy is assessed considering measured data from an actual centrifugal\ncompressor. The statistics obtained for both forward and backward modal\nparameters are finally compared against modal parameters identified during\nstandard stability verification testing (SVT) of centrifugal compressors prior\nto shipment, using classical Experimental Modal Analysis (EMA) algorithms. The\ncurrent work demonstrates that combination of OMA algorithms can provide quite\naccurate estimates for both the modal parameters and the associated\nuncertainties with low computational costs.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of operational modal analysis algorithms to identify modal parameters of an actual centrifugal compressor\",\"authors\":\"Leandro O. Zague, Daniel A. Castello, Carlos F. T. Matt\",\"doi\":\"arxiv-2407.07273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novelty of the current work is precisely to propose a statistical\\nprocedure to combine estimates of the modal parameters provided by any set of\\nOperational Modal Analysis (OMA) algorithms so as to avoid preference for a\\nparticular one and also to derive an approximate joint probability distribution\\nof the modal parameters, from which engineering statistics of interest such as\\nmean value and variance are readily provided. The effectiveness of the proposed\\nstrategy is assessed considering measured data from an actual centrifugal\\ncompressor. The statistics obtained for both forward and backward modal\\nparameters are finally compared against modal parameters identified during\\nstandard stability verification testing (SVT) of centrifugal compressors prior\\nto shipment, using classical Experimental Modal Analysis (EMA) algorithms. The\\ncurrent work demonstrates that combination of OMA algorithms can provide quite\\naccurate estimates for both the modal parameters and the associated\\nuncertainties with low computational costs.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前工作的新颖之处恰恰在于提出了一种统计程序,将任意一组运行模态分析(OMA)算法提供的模态参数估计结合起来,以避免偏好特定的算法,同时得出模态参数的近似联合概率分布,并从中轻松提供平均值和方差等相关工程统计数据。根据实际离心压缩机的测量数据,对所提策略的有效性进行了评估。最后,利用经典的实验模态分析 (EMA) 算法,将获得的前向和后向模态参数统计数据与离心式压缩机出厂前的标准稳定性验证测试 (SVT) 中确定的模态参数进行比较。目前的工作表明,OMA 算法的组合可以以较低的计算成本提供相当精确的模态参数和相关不确定性估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of operational modal analysis algorithms to identify modal parameters of an actual centrifugal compressor
The novelty of the current work is precisely to propose a statistical procedure to combine estimates of the modal parameters provided by any set of Operational Modal Analysis (OMA) algorithms so as to avoid preference for a particular one and also to derive an approximate joint probability distribution of the modal parameters, from which engineering statistics of interest such as mean value and variance are readily provided. The effectiveness of the proposed strategy is assessed considering measured data from an actual centrifugal compressor. The statistics obtained for both forward and backward modal parameters are finally compared against modal parameters identified during standard stability verification testing (SVT) of centrifugal compressors prior to shipment, using classical Experimental Modal Analysis (EMA) algorithms. The current work demonstrates that combination of OMA algorithms can provide quite accurate estimates for both the modal parameters and the associated uncertainties with low computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1