{"title":"激光诱导的空化气泡在刚性壁附近与含气孔的能量分区","authors":"Dong-qiao He, Hai-gang Wen, Si-yuan Geng, Chen-xi Yang, Qiang Zhong, Zhi-feng Yao","doi":"10.1007/s42241-024-0035-5","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the energy partition in laser-induced cavitation bubbles near the rigid wall with a gas-containing hole, we utilized a nanosecond resolution photography system based on a Q-switched Nd: YAG laser and conventional industrial camera to carefully observe the transient process of bubble collapse near the rigid wall with a gas-containing hole. We analyzed the generation of collapse microjets and the emission of collapse shock waves. We found that the cavitation bubble near the rigid wall with a gas-containing hole collapsed at different times and space, and produced various types of shock waves. Based on the far field pressure information of the shock waves measured by hydrophone, the energy of the shock waves generated by the bubble collapse near the rigid wall with a gas-containing hole is calculated for the first time. The results show that the ratio of collapse shock wave energy to bubble energy is approximately between 0.7 and 0.8.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 3","pages":"435 - 443"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy partition in laser-induced cavitation bubbles near the rigid wall with a gas-containing hole\",\"authors\":\"Dong-qiao He, Hai-gang Wen, Si-yuan Geng, Chen-xi Yang, Qiang Zhong, Zhi-feng Yao\",\"doi\":\"10.1007/s42241-024-0035-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate the energy partition in laser-induced cavitation bubbles near the rigid wall with a gas-containing hole, we utilized a nanosecond resolution photography system based on a Q-switched Nd: YAG laser and conventional industrial camera to carefully observe the transient process of bubble collapse near the rigid wall with a gas-containing hole. We analyzed the generation of collapse microjets and the emission of collapse shock waves. We found that the cavitation bubble near the rigid wall with a gas-containing hole collapsed at different times and space, and produced various types of shock waves. Based on the far field pressure information of the shock waves measured by hydrophone, the energy of the shock waves generated by the bubble collapse near the rigid wall with a gas-containing hole is calculated for the first time. The results show that the ratio of collapse shock wave energy to bubble energy is approximately between 0.7 and 0.8.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"36 3\",\"pages\":\"435 - 443\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-024-0035-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0035-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy partition in laser-induced cavitation bubbles near the rigid wall with a gas-containing hole
To investigate the energy partition in laser-induced cavitation bubbles near the rigid wall with a gas-containing hole, we utilized a nanosecond resolution photography system based on a Q-switched Nd: YAG laser and conventional industrial camera to carefully observe the transient process of bubble collapse near the rigid wall with a gas-containing hole. We analyzed the generation of collapse microjets and the emission of collapse shock waves. We found that the cavitation bubble near the rigid wall with a gas-containing hole collapsed at different times and space, and produced various types of shock waves. Based on the far field pressure information of the shock waves measured by hydrophone, the energy of the shock waves generated by the bubble collapse near the rigid wall with a gas-containing hole is calculated for the first time. The results show that the ratio of collapse shock wave energy to bubble energy is approximately between 0.7 and 0.8.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.