Hiroshi Kotani, Hiroko Oshima, Justin C. Boucher, Tomoyoshi Yamano, Hiroyuki Sakaguchi, Shigeki Sato, Koji Fukuda, Akihiro Nishiyama, Kaname Yamashita, Koushiro Ohtsubo, Shinji Takeuchi, Takumi Nishiuchi, Masanobu Oshima, Marco L. Davila, Seiji Yano
{"title":"通过累积 DNA 损伤,SUMOylation 和 MEK 双重抑制剂可战胜 MYC 表达的 KRAS 突变癌症","authors":"Hiroshi Kotani, Hiroko Oshima, Justin C. Boucher, Tomoyoshi Yamano, Hiroyuki Sakaguchi, Shigeki Sato, Koji Fukuda, Akihiro Nishiyama, Kaname Yamashita, Koushiro Ohtsubo, Shinji Takeuchi, Takumi Nishiuchi, Masanobu Oshima, Marco L. Davila, Seiji Yano","doi":"10.1186/s12929-024-01060-3","DOIUrl":null,"url":null,"abstract":"KRAS mutations frequently occur in cancers, particularly pancreatic ductal adenocarcinoma, colorectal cancer, and non-small cell lung cancer. Although KRASG12C inhibitors have recently been approved, effective precision therapies have not yet been established for all KRAS-mutant cancers. Many treatments for KRAS-mutant cancers, including epigenome-targeted drugs, are currently under investigation. Small ubiquitin-like modifier (SUMO) proteins are a family of small proteins covalently attached to and detached from other proteins in cells via the processes called SUMOylation and de-SUMOylation. We assessed whether SUMOylation inhibition was effective in KRAS-mutant cancer cells. The efficacy of the first-in-class SUMO-activating enzyme E inhibitor TAK-981 (subasumstat) was assessed in multiple human and mouse KRAS-mutated cancer cell lines. A gene expression assay using a TaqMan array was used to identify biomarkers of TAK-981 efficacy. The biological roles of SUMOylation inhibition and subsequent regulatory mechanisms were investigated using immunoblot analysis, immunofluorescence assays, and mouse models. We discovered that TAK-981 downregulated the expression of the currently undruggable MYC and effectively suppressed the growth of MYC-expressing KRAS-mutant cancers across different tissue types. Moreover, TAK-981-resistant cells were sensitized to SUMOylation inhibition via MYC-overexpression. TAK-981 induced proteasomal degradation of MYC by altering the balance between SUMOylation and ubiquitination and promoting the binding of MYC and Fbxw7, a key factor in the ubiquitin–proteasome system. The efficacy of TAK-981 monotherapy in immunocompetent and immunodeficient mouse models using a mouse-derived CMT167 cell line was significant but modest. Since MAPK inhibition of the KRAS downstream pathway is crucial in KRAS-mutant cancer, we expected that co-inhibition of SUMOylation and MEK might be a good option. Surprisingly, combination treatment with TAK-981 and trametinib dramatically induced apoptosis in multiple cell lines and gene-engineered mouse-derived organoids. Moreover, combination therapy resulted in long-term tumor regression in mouse models using cell lines of different tissue types. Finally, we revealed that combination therapy complementally inhibited Rad51 and BRCA1 and accumulated DNA damage. We found that MYC downregulation occurred via SUMOylation inhibition in KRAS-mutant cancer cells. Our findings indicate that dual inhibition of SUMOylation and MEK may be a promising treatment for MYC-expressing KRAS-mutant cancers by enhancing DNA damage accumulation.","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"5 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual inhibition of SUMOylation and MEK conquers MYC-expressing KRAS-mutant cancers by accumulating DNA damage\",\"authors\":\"Hiroshi Kotani, Hiroko Oshima, Justin C. Boucher, Tomoyoshi Yamano, Hiroyuki Sakaguchi, Shigeki Sato, Koji Fukuda, Akihiro Nishiyama, Kaname Yamashita, Koushiro Ohtsubo, Shinji Takeuchi, Takumi Nishiuchi, Masanobu Oshima, Marco L. Davila, Seiji Yano\",\"doi\":\"10.1186/s12929-024-01060-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KRAS mutations frequently occur in cancers, particularly pancreatic ductal adenocarcinoma, colorectal cancer, and non-small cell lung cancer. Although KRASG12C inhibitors have recently been approved, effective precision therapies have not yet been established for all KRAS-mutant cancers. Many treatments for KRAS-mutant cancers, including epigenome-targeted drugs, are currently under investigation. Small ubiquitin-like modifier (SUMO) proteins are a family of small proteins covalently attached to and detached from other proteins in cells via the processes called SUMOylation and de-SUMOylation. We assessed whether SUMOylation inhibition was effective in KRAS-mutant cancer cells. The efficacy of the first-in-class SUMO-activating enzyme E inhibitor TAK-981 (subasumstat) was assessed in multiple human and mouse KRAS-mutated cancer cell lines. A gene expression assay using a TaqMan array was used to identify biomarkers of TAK-981 efficacy. The biological roles of SUMOylation inhibition and subsequent regulatory mechanisms were investigated using immunoblot analysis, immunofluorescence assays, and mouse models. We discovered that TAK-981 downregulated the expression of the currently undruggable MYC and effectively suppressed the growth of MYC-expressing KRAS-mutant cancers across different tissue types. Moreover, TAK-981-resistant cells were sensitized to SUMOylation inhibition via MYC-overexpression. TAK-981 induced proteasomal degradation of MYC by altering the balance between SUMOylation and ubiquitination and promoting the binding of MYC and Fbxw7, a key factor in the ubiquitin–proteasome system. The efficacy of TAK-981 monotherapy in immunocompetent and immunodeficient mouse models using a mouse-derived CMT167 cell line was significant but modest. Since MAPK inhibition of the KRAS downstream pathway is crucial in KRAS-mutant cancer, we expected that co-inhibition of SUMOylation and MEK might be a good option. Surprisingly, combination treatment with TAK-981 and trametinib dramatically induced apoptosis in multiple cell lines and gene-engineered mouse-derived organoids. Moreover, combination therapy resulted in long-term tumor regression in mouse models using cell lines of different tissue types. Finally, we revealed that combination therapy complementally inhibited Rad51 and BRCA1 and accumulated DNA damage. We found that MYC downregulation occurred via SUMOylation inhibition in KRAS-mutant cancer cells. Our findings indicate that dual inhibition of SUMOylation and MEK may be a promising treatment for MYC-expressing KRAS-mutant cancers by enhancing DNA damage accumulation.\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-024-01060-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01060-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dual inhibition of SUMOylation and MEK conquers MYC-expressing KRAS-mutant cancers by accumulating DNA damage
KRAS mutations frequently occur in cancers, particularly pancreatic ductal adenocarcinoma, colorectal cancer, and non-small cell lung cancer. Although KRASG12C inhibitors have recently been approved, effective precision therapies have not yet been established for all KRAS-mutant cancers. Many treatments for KRAS-mutant cancers, including epigenome-targeted drugs, are currently under investigation. Small ubiquitin-like modifier (SUMO) proteins are a family of small proteins covalently attached to and detached from other proteins in cells via the processes called SUMOylation and de-SUMOylation. We assessed whether SUMOylation inhibition was effective in KRAS-mutant cancer cells. The efficacy of the first-in-class SUMO-activating enzyme E inhibitor TAK-981 (subasumstat) was assessed in multiple human and mouse KRAS-mutated cancer cell lines. A gene expression assay using a TaqMan array was used to identify biomarkers of TAK-981 efficacy. The biological roles of SUMOylation inhibition and subsequent regulatory mechanisms were investigated using immunoblot analysis, immunofluorescence assays, and mouse models. We discovered that TAK-981 downregulated the expression of the currently undruggable MYC and effectively suppressed the growth of MYC-expressing KRAS-mutant cancers across different tissue types. Moreover, TAK-981-resistant cells were sensitized to SUMOylation inhibition via MYC-overexpression. TAK-981 induced proteasomal degradation of MYC by altering the balance between SUMOylation and ubiquitination and promoting the binding of MYC and Fbxw7, a key factor in the ubiquitin–proteasome system. The efficacy of TAK-981 monotherapy in immunocompetent and immunodeficient mouse models using a mouse-derived CMT167 cell line was significant but modest. Since MAPK inhibition of the KRAS downstream pathway is crucial in KRAS-mutant cancer, we expected that co-inhibition of SUMOylation and MEK might be a good option. Surprisingly, combination treatment with TAK-981 and trametinib dramatically induced apoptosis in multiple cell lines and gene-engineered mouse-derived organoids. Moreover, combination therapy resulted in long-term tumor regression in mouse models using cell lines of different tissue types. Finally, we revealed that combination therapy complementally inhibited Rad51 and BRCA1 and accumulated DNA damage. We found that MYC downregulation occurred via SUMOylation inhibition in KRAS-mutant cancer cells. Our findings indicate that dual inhibition of SUMOylation and MEK may be a promising treatment for MYC-expressing KRAS-mutant cancers by enhancing DNA damage accumulation.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.