Alan J McCubbin, Christopher G Irwin, Ricardo J S Costa
{"title":"在日益变暖的地球上提高体力生产率和工作表现--减轻劳累性热应激的挑战和营养策略。","authors":"Alan J McCubbin, Christopher G Irwin, Ricardo J S Costa","doi":"10.1007/s13668-024-00554-8","DOIUrl":null,"url":null,"abstract":"<p><p>PURPOSE OF REVIEW: Climate change is predicted to increase the frequency and severity of exposure to hot environments. This can impair health, physical performance, and productivity for active individuals in occupational and athletic settings. This review summarizes current knowledge and recent advancements in nutritional strategies to minimize the impact of exertional-heat stress (EHS). RECENT FINDINGS: Hydration strategies limiting body mass loss to < 3% during EHS are performance-beneficial in weight-supported activities, although evidence regarding smaller fluid deficits (< 2% body mass loss) and weight-dependent activities is less clear due to a lack of well-designed studies with adequate blinding. Sodium replacement requirements during EHS depends on both sweat losses and the extent of fluid replacement, with quantified sodium replacement only necessary once fluid replacement > 60-80% of losses. Ice ingestion lowers core temperature and may improve thermal comfort and performance outcomes when consumed before, but less so during activity. Prevention and management of gastrointestinal disturbances during EHS should focus on high carbohydrate but low FODMAP availability before and during exercise, frequent provision of carbohydrate and/or protein during exercise, adequate hydration, and body temperature regulation. Evidence for these approaches is lacking in occupational settings. Acute kidney injury is a potential concern resulting from inadequate fluid replacement during and post-EHS, and emerging evidence suggests that repeated exposures may increase the risk of developing chronic kidney disease. Nutritional strategies can help regulate hydration, body temperature, and gastrointestinal status during EHS. Doing so minimizes the impact of EHS on health and safety and optimizes productivity and performance outcomes on a warming planet.</p>","PeriodicalId":10844,"journal":{"name":"Current Nutrition Reports","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nourishing Physical Productivity and Performance On a Warming Planet - Challenges and Nutritional Strategies to Mitigate Exertional Heat Stress.\",\"authors\":\"Alan J McCubbin, Christopher G Irwin, Ricardo J S Costa\",\"doi\":\"10.1007/s13668-024-00554-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PURPOSE OF REVIEW: Climate change is predicted to increase the frequency and severity of exposure to hot environments. This can impair health, physical performance, and productivity for active individuals in occupational and athletic settings. This review summarizes current knowledge and recent advancements in nutritional strategies to minimize the impact of exertional-heat stress (EHS). RECENT FINDINGS: Hydration strategies limiting body mass loss to < 3% during EHS are performance-beneficial in weight-supported activities, although evidence regarding smaller fluid deficits (< 2% body mass loss) and weight-dependent activities is less clear due to a lack of well-designed studies with adequate blinding. Sodium replacement requirements during EHS depends on both sweat losses and the extent of fluid replacement, with quantified sodium replacement only necessary once fluid replacement > 60-80% of losses. Ice ingestion lowers core temperature and may improve thermal comfort and performance outcomes when consumed before, but less so during activity. Prevention and management of gastrointestinal disturbances during EHS should focus on high carbohydrate but low FODMAP availability before and during exercise, frequent provision of carbohydrate and/or protein during exercise, adequate hydration, and body temperature regulation. Evidence for these approaches is lacking in occupational settings. Acute kidney injury is a potential concern resulting from inadequate fluid replacement during and post-EHS, and emerging evidence suggests that repeated exposures may increase the risk of developing chronic kidney disease. Nutritional strategies can help regulate hydration, body temperature, and gastrointestinal status during EHS. Doing so minimizes the impact of EHS on health and safety and optimizes productivity and performance outcomes on a warming planet.</p>\",\"PeriodicalId\":10844,\"journal\":{\"name\":\"Current Nutrition Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nutrition Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13668-024-00554-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nutrition Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13668-024-00554-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Nourishing Physical Productivity and Performance On a Warming Planet - Challenges and Nutritional Strategies to Mitigate Exertional Heat Stress.
PURPOSE OF REVIEW: Climate change is predicted to increase the frequency and severity of exposure to hot environments. This can impair health, physical performance, and productivity for active individuals in occupational and athletic settings. This review summarizes current knowledge and recent advancements in nutritional strategies to minimize the impact of exertional-heat stress (EHS). RECENT FINDINGS: Hydration strategies limiting body mass loss to < 3% during EHS are performance-beneficial in weight-supported activities, although evidence regarding smaller fluid deficits (< 2% body mass loss) and weight-dependent activities is less clear due to a lack of well-designed studies with adequate blinding. Sodium replacement requirements during EHS depends on both sweat losses and the extent of fluid replacement, with quantified sodium replacement only necessary once fluid replacement > 60-80% of losses. Ice ingestion lowers core temperature and may improve thermal comfort and performance outcomes when consumed before, but less so during activity. Prevention and management of gastrointestinal disturbances during EHS should focus on high carbohydrate but low FODMAP availability before and during exercise, frequent provision of carbohydrate and/or protein during exercise, adequate hydration, and body temperature regulation. Evidence for these approaches is lacking in occupational settings. Acute kidney injury is a potential concern resulting from inadequate fluid replacement during and post-EHS, and emerging evidence suggests that repeated exposures may increase the risk of developing chronic kidney disease. Nutritional strategies can help regulate hydration, body temperature, and gastrointestinal status during EHS. Doing so minimizes the impact of EHS on health and safety and optimizes productivity and performance outcomes on a warming planet.
期刊介绍:
This journal aims to provide comprehensive review articles that emphasize significant developments in nutrition research emerging in recent publications. By presenting clear, insightful, balanced contributions by international experts, the journal intends to discuss the influence of nutrition on major health conditions such as diabetes, cardiovascular disease, cancer, and obesity, as well as the impact of nutrition on genetics, metabolic function, and public health. We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas across the field. Section Editors select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. We also provide commentaries from well-known figures in the field, and an Editorial Board of more than 25 internationally diverse members reviews the annual table of contents, suggests topics of special importance to their country/region, and ensures that topics and current and include emerging research.