{"title":"植物是如何通过 UbiA 前酰基转移酶进化出特殊酚类代谢物的前酰基化的?","authors":"Ryosuke Munakata, Kazufumi Yazaki","doi":"10.1016/j.pbi.2024.102601","DOIUrl":null,"url":null,"abstract":"<div><p>Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including <em>C-</em> and <em>O</em>-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102601"},"PeriodicalIF":8.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952662400092X/pdfft?md5=fe9ce3f68d85d6ad0556f74b47caaa07&pid=1-s2.0-S136952662400092X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How did plants evolve the prenylation of specialized phenolic metabolites by means of UbiA prenyltransferases?\",\"authors\":\"Ryosuke Munakata, Kazufumi Yazaki\",\"doi\":\"10.1016/j.pbi.2024.102601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including <em>C-</em> and <em>O</em>-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"81 \",\"pages\":\"Article 102601\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S136952662400092X/pdfft?md5=fe9ce3f68d85d6ad0556f74b47caaa07&pid=1-s2.0-S136952662400092X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136952662400092X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136952662400092X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
How did plants evolve the prenylation of specialized phenolic metabolites by means of UbiA prenyltransferases?
Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including C- and O-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.