{"title":"突尼斯东南部全新世sebkhas沉积物的石英颗粒微质地:对沉积过程和沉积环境的影响","authors":"Mariem Ben Ameur , Hamdi Omar , Sameh Masmoudi , Chokri Yaich","doi":"10.1016/j.jafrearsci.2024.105329","DOIUrl":null,"url":null,"abstract":"<div><p>Detrital quartz grains extracted from sebkha sediments in southeastern Tunisia underwent scanning electron microscopy analysis to identify sediment sources and assess the influence of the saline environment on the grains. Core sediments collected from Sebkha el Melah and Sebkha Mhabeul cover the last 5000 and 2000 BP, respectively. The uppermost Unit III, present in both cores, exhibits two distinct facies based on the mechanical microtextures of its quartz grains. The aeolian facies sediments are characterized by quartz grains with rounded outlines, upturned plates, and crescentic percussion marks. In contrast, the fluvial facies sediments are associated with quartz grains featuring subangular outlines, v-shaped percussion cracks, conchoidal fractures. Observations on the quartz grains of the sebkhas suggest multiple transportation and processing events, indicating long-distance transport and rapid deposition rates. The majority of quartz grains appear to originate from the surrounding terrain, reflecting the dynamic geological history of the region. This study delves into the connection between microtexture variations on quartz grain surfaces and specific historical climatic conditions in the sebkhas. By examining geochemical variations along the cores, facies with elevated salt concentrations corresponding to warmer periods reveal extensively weathered quartz grains. This substantial chemical alteration is evident through microtextures such as oriented etch pits, anastomosed dissolution networks and solution crevasses. The profound dissolution has significantly impacted the quartz lattice, resulting in the decomposition of the grains and the formation of \"cauliflower\" or \"spongy\" shapes, erasing prior microtextures. Conversely, during less warm periods, quartz dissolution was less severe, thereby preserving microtextures.</p><p>Sand grain surfaces are notably sensitive to both transport processes and variations in the physicochemical environment. In the hypersaline and confined environments of sebkhas in southeastern Tunisia, potent post-sedimentary processes can obliterate and obscure the original microtextures recorded on grains from previous environments due to highly fluctuating physicochemical conditions.</p></div>","PeriodicalId":14874,"journal":{"name":"Journal of African Earth Sciences","volume":"217 ","pages":"Article 105329"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quartz grain microtextures of Holocene sebkhas sediments in southeast Tunisia: Implications for sedimentary processes and depositional environments\",\"authors\":\"Mariem Ben Ameur , Hamdi Omar , Sameh Masmoudi , Chokri Yaich\",\"doi\":\"10.1016/j.jafrearsci.2024.105329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Detrital quartz grains extracted from sebkha sediments in southeastern Tunisia underwent scanning electron microscopy analysis to identify sediment sources and assess the influence of the saline environment on the grains. Core sediments collected from Sebkha el Melah and Sebkha Mhabeul cover the last 5000 and 2000 BP, respectively. The uppermost Unit III, present in both cores, exhibits two distinct facies based on the mechanical microtextures of its quartz grains. The aeolian facies sediments are characterized by quartz grains with rounded outlines, upturned plates, and crescentic percussion marks. In contrast, the fluvial facies sediments are associated with quartz grains featuring subangular outlines, v-shaped percussion cracks, conchoidal fractures. Observations on the quartz grains of the sebkhas suggest multiple transportation and processing events, indicating long-distance transport and rapid deposition rates. The majority of quartz grains appear to originate from the surrounding terrain, reflecting the dynamic geological history of the region. This study delves into the connection between microtexture variations on quartz grain surfaces and specific historical climatic conditions in the sebkhas. By examining geochemical variations along the cores, facies with elevated salt concentrations corresponding to warmer periods reveal extensively weathered quartz grains. This substantial chemical alteration is evident through microtextures such as oriented etch pits, anastomosed dissolution networks and solution crevasses. The profound dissolution has significantly impacted the quartz lattice, resulting in the decomposition of the grains and the formation of \\\"cauliflower\\\" or \\\"spongy\\\" shapes, erasing prior microtextures. Conversely, during less warm periods, quartz dissolution was less severe, thereby preserving microtextures.</p><p>Sand grain surfaces are notably sensitive to both transport processes and variations in the physicochemical environment. In the hypersaline and confined environments of sebkhas in southeastern Tunisia, potent post-sedimentary processes can obliterate and obscure the original microtextures recorded on grains from previous environments due to highly fluctuating physicochemical conditions.</p></div>\",\"PeriodicalId\":14874,\"journal\":{\"name\":\"Journal of African Earth Sciences\",\"volume\":\"217 \",\"pages\":\"Article 105329\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of African Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464343X24001626\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of African Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464343X24001626","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Quartz grain microtextures of Holocene sebkhas sediments in southeast Tunisia: Implications for sedimentary processes and depositional environments
Detrital quartz grains extracted from sebkha sediments in southeastern Tunisia underwent scanning electron microscopy analysis to identify sediment sources and assess the influence of the saline environment on the grains. Core sediments collected from Sebkha el Melah and Sebkha Mhabeul cover the last 5000 and 2000 BP, respectively. The uppermost Unit III, present in both cores, exhibits two distinct facies based on the mechanical microtextures of its quartz grains. The aeolian facies sediments are characterized by quartz grains with rounded outlines, upturned plates, and crescentic percussion marks. In contrast, the fluvial facies sediments are associated with quartz grains featuring subangular outlines, v-shaped percussion cracks, conchoidal fractures. Observations on the quartz grains of the sebkhas suggest multiple transportation and processing events, indicating long-distance transport and rapid deposition rates. The majority of quartz grains appear to originate from the surrounding terrain, reflecting the dynamic geological history of the region. This study delves into the connection between microtexture variations on quartz grain surfaces and specific historical climatic conditions in the sebkhas. By examining geochemical variations along the cores, facies with elevated salt concentrations corresponding to warmer periods reveal extensively weathered quartz grains. This substantial chemical alteration is evident through microtextures such as oriented etch pits, anastomosed dissolution networks and solution crevasses. The profound dissolution has significantly impacted the quartz lattice, resulting in the decomposition of the grains and the formation of "cauliflower" or "spongy" shapes, erasing prior microtextures. Conversely, during less warm periods, quartz dissolution was less severe, thereby preserving microtextures.
Sand grain surfaces are notably sensitive to both transport processes and variations in the physicochemical environment. In the hypersaline and confined environments of sebkhas in southeastern Tunisia, potent post-sedimentary processes can obliterate and obscure the original microtextures recorded on grains from previous environments due to highly fluctuating physicochemical conditions.
期刊介绍:
The Journal of African Earth Sciences sees itself as the prime geological journal for all aspects of the Earth Sciences about the African plate. Papers dealing with peripheral areas are welcome if they demonstrate a tight link with Africa.
The Journal publishes high quality, peer-reviewed scientific papers. It is devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be considered. Papers must have international appeal and should present work of more regional than local significance and dealing with well identified and justified scientific questions. Specialised technical papers, analytical or exploration reports must be avoided. Papers on applied geology should preferably be linked to such core disciplines and must be addressed to a more general geoscientific audience.