{"title":"函数数据方差函数的 Oracle 高效估计和全局推断","authors":"Li Cai , Suojin Wang","doi":"10.1016/j.jspi.2024.106210","DOIUrl":null,"url":null,"abstract":"<div><p>A new two-step reconstruction-based moment estimator and an asymptotically correct smooth simultaneous confidence band as a global inference tool are proposed for the heteroscedastic variance function of dense functional data. Step one involves spline smoothing for individual trajectory reconstructions and step two employs kernel regression on the individual squared residuals to estimate each trajectory variability. Then by the method of moment an estimator for the variance function of functional data is constructed. The estimation procedure is innovative by synthesizing spline smoothing and kernel regression together, which allows one not only to apply the fast computing speed of spline regression but also to employ the flexible local estimation and the extreme value theory of kernel smoothing. The resulting estimator for the variance function is shown to be oracle-efficient in the sense that it is uniformly as efficient as the ideal estimator when all trajectories were known by “oracle”. As a result, an asymptotically correct simultaneous confidence band for the variance function is established. Simulation results support our asymptotic theory with fast computation. As an illustration, the proposed method is applied to the analyses of two real data sets leading to a number of discoveries.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"234 ","pages":"Article 106210"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oracle-efficient estimation and global inferences for variance function of functional data\",\"authors\":\"Li Cai , Suojin Wang\",\"doi\":\"10.1016/j.jspi.2024.106210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new two-step reconstruction-based moment estimator and an asymptotically correct smooth simultaneous confidence band as a global inference tool are proposed for the heteroscedastic variance function of dense functional data. Step one involves spline smoothing for individual trajectory reconstructions and step two employs kernel regression on the individual squared residuals to estimate each trajectory variability. Then by the method of moment an estimator for the variance function of functional data is constructed. The estimation procedure is innovative by synthesizing spline smoothing and kernel regression together, which allows one not only to apply the fast computing speed of spline regression but also to employ the flexible local estimation and the extreme value theory of kernel smoothing. The resulting estimator for the variance function is shown to be oracle-efficient in the sense that it is uniformly as efficient as the ideal estimator when all trajectories were known by “oracle”. As a result, an asymptotically correct simultaneous confidence band for the variance function is established. Simulation results support our asymptotic theory with fast computation. As an illustration, the proposed method is applied to the analyses of two real data sets leading to a number of discoveries.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"234 \",\"pages\":\"Article 106210\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000673\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000673","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Oracle-efficient estimation and global inferences for variance function of functional data
A new two-step reconstruction-based moment estimator and an asymptotically correct smooth simultaneous confidence band as a global inference tool are proposed for the heteroscedastic variance function of dense functional data. Step one involves spline smoothing for individual trajectory reconstructions and step two employs kernel regression on the individual squared residuals to estimate each trajectory variability. Then by the method of moment an estimator for the variance function of functional data is constructed. The estimation procedure is innovative by synthesizing spline smoothing and kernel regression together, which allows one not only to apply the fast computing speed of spline regression but also to employ the flexible local estimation and the extreme value theory of kernel smoothing. The resulting estimator for the variance function is shown to be oracle-efficient in the sense that it is uniformly as efficient as the ideal estimator when all trajectories were known by “oracle”. As a result, an asymptotically correct simultaneous confidence band for the variance function is established. Simulation results support our asymptotic theory with fast computation. As an illustration, the proposed method is applied to the analyses of two real data sets leading to a number of discoveries.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.