预测多个海滩剖面形态演变的数据模型

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2024-07-06 DOI:10.1016/j.coastaleng.2024.104574
Willian Weber de Melo , José Pinho , Isabel Iglesias
{"title":"预测多个海滩剖面形态演变的数据模型","authors":"Willian Weber de Melo ,&nbsp;José Pinho ,&nbsp;Isabel Iglesias","doi":"10.1016/j.coastaleng.2024.104574","DOIUrl":null,"url":null,"abstract":"<div><p>Beaches are a natural defense against extreme events, such as storms and hurricanes, whose intensity and frequency are expected to increase in the future due to climate change. In this context, models that forecast the morphological evolution of coastal areas can be used to anticipate the effects of future scenarios, allowing early action to mitigate the damage caused by extreme events. Hence, this study included data from three different monitoring programs in data models to simulate the seasonal morphological evolution of several Portuguese beaches. Two different data models were implemented using the Random Forest algorithm. One was fed with profile data and wave conditions while the other considered also sediment size data. Both models achieved suitable performances, but the inclusion of sediment data reduced the model errors and variance, and thus improved model performance. It was demonstrated that combining data from multidisciplinary campaigns can be a solution to generate reliable and robust morphological forecasting models.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378383924001224/pdfft?md5=7719bc3324d28e370bef02f89442e2da&pid=1-s2.0-S0378383924001224-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A data model to forecast the morphological evolution of multiple beach profiles\",\"authors\":\"Willian Weber de Melo ,&nbsp;José Pinho ,&nbsp;Isabel Iglesias\",\"doi\":\"10.1016/j.coastaleng.2024.104574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beaches are a natural defense against extreme events, such as storms and hurricanes, whose intensity and frequency are expected to increase in the future due to climate change. In this context, models that forecast the morphological evolution of coastal areas can be used to anticipate the effects of future scenarios, allowing early action to mitigate the damage caused by extreme events. Hence, this study included data from three different monitoring programs in data models to simulate the seasonal morphological evolution of several Portuguese beaches. Two different data models were implemented using the Random Forest algorithm. One was fed with profile data and wave conditions while the other considered also sediment size data. Both models achieved suitable performances, but the inclusion of sediment data reduced the model errors and variance, and thus improved model performance. It was demonstrated that combining data from multidisciplinary campaigns can be a solution to generate reliable and robust morphological forecasting models.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001224/pdfft?md5=7719bc3324d28e370bef02f89442e2da&pid=1-s2.0-S0378383924001224-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001224\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001224","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

海滩是抵御风暴和飓风等极端事件的天然屏障,由于气候变化,预计这些极端事件 的强度和频率在未来都会增加。在这种情况下,可以利用预测沿海地区形态演变的模型来预测未来情景的影响,以便及早采取行动,减轻极端事件造成的损失。因此,本研究将三个不同监测项目的数据纳入数据模型,以模拟葡萄牙多个海滩的季节性形态演变。采用随机森林算法建立了两种不同的数据模型。其中一个模型采用剖面数据和波浪条件,而另一个模型则同时考虑了沉积物大小数据。两种模型都取得了合适的性能,但加入沉积物数据后,模型误差和方差都有所减小,从而提高了模型性能。结果表明,将多学科活动的数据结合起来,可以生成可靠、稳健的形态预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A data model to forecast the morphological evolution of multiple beach profiles

Beaches are a natural defense against extreme events, such as storms and hurricanes, whose intensity and frequency are expected to increase in the future due to climate change. In this context, models that forecast the morphological evolution of coastal areas can be used to anticipate the effects of future scenarios, allowing early action to mitigate the damage caused by extreme events. Hence, this study included data from three different monitoring programs in data models to simulate the seasonal morphological evolution of several Portuguese beaches. Two different data models were implemented using the Random Forest algorithm. One was fed with profile data and wave conditions while the other considered also sediment size data. Both models achieved suitable performances, but the inclusion of sediment data reduced the model errors and variance, and thus improved model performance. It was demonstrated that combining data from multidisciplinary campaigns can be a solution to generate reliable and robust morphological forecasting models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
An enhanced model for an extreme wave impacting a vertical cylinder An adaptive internal mass source wave-maker for short wave generation Convergence and divergence of storm waves induced by multi-scale currents: Observations and coupled wave-current modeling Wave overtopping discharges at rubble mound structures in shallow water Computations of energetic nearshore waves: Are weakly dispersive phase-resolving models telling the same story?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1