马兰戈尼效应和不溶表面活性剂在幂律流体深层的扩散

IF 2.5 3区 工程技术 Q2 MECHANICS European Journal of Mechanics B-fluids Pub Date : 2024-07-02 DOI:10.1016/j.euromechflu.2024.06.009
R. Baños , F. Méndez , J. Arcos , O. Bautista
{"title":"马兰戈尼效应和不溶表面活性剂在幂律流体深层的扩散","authors":"R. Baños ,&nbsp;F. Méndez ,&nbsp;J. Arcos ,&nbsp;O. Bautista","doi":"10.1016/j.euromechflu.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a numerical study is conducted to analyze the spreading dynamics of an insoluble and non-diffusive surfactant through the Marangoni convection mechanism on the surface of a deep layer of a shear thickening fluid, whose behavior follows the power-law fluid rheological model. The momentum and convective–diffusion equations are non-dimensionalized and solved numerically by an implicit finite-difference scheme. The dynamic of the physical problem depends on dimensionless parameters that control the decay of the temporal variations in the surfactant concentration: the Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, the power index <span><math><mi>n</mi></math></span>, and <span><math><mi>ɛ</mi></math></span> is the ratio between the wave amplitude and the mean surfactant concentration. The main findings show that opposite to shear-thinning fluids, shear-thickening fluids require less time to reach the uniform condition in the surfactant distribution due to a lower response to the inertia of the fluid; this time is even less than that needed for Newtonian fluids. Besides, both types, pseudoplastic and dilatant fluids, showed a similar response when varying the Reynolds number; as this parameter increases, the temporal decay of the surfactant concentration on the fluid surface increases while the distance over which the fluid motion is diffused towards the bottom of the fluid layer decreases.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marangoni effect and spreading of an insoluble surfactant over a deep layer of a power-law fluid\",\"authors\":\"R. Baños ,&nbsp;F. Méndez ,&nbsp;J. Arcos ,&nbsp;O. Bautista\",\"doi\":\"10.1016/j.euromechflu.2024.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a numerical study is conducted to analyze the spreading dynamics of an insoluble and non-diffusive surfactant through the Marangoni convection mechanism on the surface of a deep layer of a shear thickening fluid, whose behavior follows the power-law fluid rheological model. The momentum and convective–diffusion equations are non-dimensionalized and solved numerically by an implicit finite-difference scheme. The dynamic of the physical problem depends on dimensionless parameters that control the decay of the temporal variations in the surfactant concentration: the Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, the power index <span><math><mi>n</mi></math></span>, and <span><math><mi>ɛ</mi></math></span> is the ratio between the wave amplitude and the mean surfactant concentration. The main findings show that opposite to shear-thinning fluids, shear-thickening fluids require less time to reach the uniform condition in the surfactant distribution due to a lower response to the inertia of the fluid; this time is even less than that needed for Newtonian fluids. Besides, both types, pseudoplastic and dilatant fluids, showed a similar response when varying the Reynolds number; as this parameter increases, the temporal decay of the surfactant concentration on the fluid surface increases while the distance over which the fluid motion is diffused towards the bottom of the fluid layer decreases.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000888\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000888","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用数值方法分析了不溶性和非扩散性表面活性剂通过马兰戈尼对流机制在剪切增稠流体深层表面的扩散动力学,该流体的行为遵循幂律流体流变模型。动量方程和对流扩散方程均未进行维度化处理,并采用隐式有限差分方案进行数值求解。物理问题的动态取决于控制表面活性剂浓度时间变化衰减的无量纲参数:雷诺数 Re、功率指数 n 以及波幅与平均表面活性剂浓度之比 ɛ。主要研究结果表明,与剪切稀化流体相反,剪切增稠流体由于对流体惯性的反应较小,达到表面活性剂分布均匀状态所需的时间较短;甚至比牛顿流体所需的时间更短。此外,在改变雷诺数时,假塑性流体和扩张性流体这两种类型都表现出相似的反应;随着该参数的增加,流体表面表面活性剂浓度的时间衰减增加,而流体运动向流体层底部扩散的距离减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Marangoni effect and spreading of an insoluble surfactant over a deep layer of a power-law fluid

In this work, a numerical study is conducted to analyze the spreading dynamics of an insoluble and non-diffusive surfactant through the Marangoni convection mechanism on the surface of a deep layer of a shear thickening fluid, whose behavior follows the power-law fluid rheological model. The momentum and convective–diffusion equations are non-dimensionalized and solved numerically by an implicit finite-difference scheme. The dynamic of the physical problem depends on dimensionless parameters that control the decay of the temporal variations in the surfactant concentration: the Reynolds number Re, the power index n, and ɛ is the ratio between the wave amplitude and the mean surfactant concentration. The main findings show that opposite to shear-thinning fluids, shear-thickening fluids require less time to reach the uniform condition in the surfactant distribution due to a lower response to the inertia of the fluid; this time is even less than that needed for Newtonian fluids. Besides, both types, pseudoplastic and dilatant fluids, showed a similar response when varying the Reynolds number; as this parameter increases, the temporal decay of the surfactant concentration on the fluid surface increases while the distance over which the fluid motion is diffused towards the bottom of the fluid layer decreases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
期刊最新文献
Influence of radiation on the stability of MHD micropolar fluid in a vertical channel The broad study of blade cascade under controlled torsional flutter: Dynamics of the flow and stability analysis Calendar Editorial Board Characterizing nonlinear flow dynamics in hydrodynamic and magnetohydrodynamic regimes through modal decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1