In this study, we examine the oscillatory squeeze flow of a viscoelastic fluid confined between two hydrophobic spheres of differing radii. The fluid flow is generated by the harmonic motion of an upper sphere, while the lower sphere remains stationary. We have considered that the gap between the spheres is much smaller than their radii and that the oscillation amplitude of the moving sphere is small compared to this gap. Under these conditions, the curved surfaces can be approximated by quadratic functions of the radial coordinate . A dynamic slip law is used to model slippage at the fluid–solid interface, which incorporates interfacial memory effects through the slip-relaxation time, together with the slip-yield Spikes–Granick condition, in which interfacial slippage arises when the fluid shear stress exceeds a critical value; otherwise, a non-slip region persists. Given the dominance of viscous over inertial effects, the convective terms in the momentum equation were neglected, and the analysis was carried out in a strictly periodic regimen. An analytical solution of the governing equations is derived, where the following parameters control the phenomenon: the Deborah number , the Womersley number , the Navier slip length , the slip relaxation number and the critical shear stress at the fluid–solid interface . Our findings indicate that, relative to flat surfaces, when curved surfaces are assumed, the zone of the non-slip region decreases. Additionally, incorporating viscoelastic fluids results in a diminished compression force, and lower mechanical power is consumed by implementing hydrophobic surfaces, high oscillation frequencies, and viscoelastic fluids.
扫码关注我们
求助内容:
应助结果提醒方式:
