评估交通系统在社区抗震中的作用

Kairui Feng , Cao Wang , Quanwang Li
{"title":"评估交通系统在社区抗震中的作用","authors":"Kairui Feng ,&nbsp;Cao Wang ,&nbsp;Quanwang Li","doi":"10.1016/j.rcns.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>The swift recuperation of communities following natural hazards heavily relies on the efficiency of transportation systems, facilitating the timely delivery of vital resources and manpower to reconstruction sites. This paper delves into the pivotal role of transportation systems in aiding the recovery of built environments, proposing an evaluative metric that correlates transportation capacity with the speed of post-earthquake recovery. Focusing on optimizing urban population capacity in the aftermath of earthquakes, the study comprehensively examines the impact of pre-earthquake measures such as enhancing building or bridge seismic performance on post-earthquake urban population capacity. The methodology is demonstrated through an analysis of Beijing’s transportation system, elucidating how enhancements to transportation infrastructure fortify the resilience of built environments. Additionally, the concept of a resource supply rate is introduced to gauge the level of logistical support available after an earthquake. This rate tends to decrease when transportation damage is significant or when the demands for repairs overwhelm available resources, indicating a need for retrofitting. Through sensitivity analysis, this study explores how investments in the built environment or logistical systems can increase the resource supply rate, thereby contributing to more resilient urban areas in the face of seismic challenges.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"3 3","pages":"Pages 65-78"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277274162400022X/pdfft?md5=51dd67478de34ba074039eced03aaa42&pid=1-s2.0-S277274162400022X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluating the role of transportation system in community seismic resilience\",\"authors\":\"Kairui Feng ,&nbsp;Cao Wang ,&nbsp;Quanwang Li\",\"doi\":\"10.1016/j.rcns.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The swift recuperation of communities following natural hazards heavily relies on the efficiency of transportation systems, facilitating the timely delivery of vital resources and manpower to reconstruction sites. This paper delves into the pivotal role of transportation systems in aiding the recovery of built environments, proposing an evaluative metric that correlates transportation capacity with the speed of post-earthquake recovery. Focusing on optimizing urban population capacity in the aftermath of earthquakes, the study comprehensively examines the impact of pre-earthquake measures such as enhancing building or bridge seismic performance on post-earthquake urban population capacity. The methodology is demonstrated through an analysis of Beijing’s transportation system, elucidating how enhancements to transportation infrastructure fortify the resilience of built environments. Additionally, the concept of a resource supply rate is introduced to gauge the level of logistical support available after an earthquake. This rate tends to decrease when transportation damage is significant or when the demands for repairs overwhelm available resources, indicating a need for retrofitting. Through sensitivity analysis, this study explores how investments in the built environment or logistical systems can increase the resource supply rate, thereby contributing to more resilient urban areas in the face of seismic challenges.</p></div>\",\"PeriodicalId\":101077,\"journal\":{\"name\":\"Resilient Cities and Structures\",\"volume\":\"3 3\",\"pages\":\"Pages 65-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277274162400022X/pdfft?md5=51dd67478de34ba074039eced03aaa42&pid=1-s2.0-S277274162400022X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resilient Cities and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277274162400022X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277274162400022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然灾害发生后,社区的迅速恢复在很大程度上依赖于运输系统的效率,它有助于将重要资源和人力及时运送到重建地点。本文深入探讨了交通系统在帮助建筑环境恢复中的关键作用,提出了一种将交通能力与震后恢复速度相关联的评估指标。该研究以优化地震后城市人口容量为重点,全面考察了震前措施(如提高建筑物或桥梁的抗震性能)对震后城市人口容量的影响。研究方法通过对北京交通系统的分析进行了论证,阐明了交通基础设施的改善如何增强建筑环境的抗震能力。此外,该方法还引入了资源供应率的概念,以衡量地震后可用的后勤支持水平。当交通受到严重破坏或维修需求超过可用资源时,资源供应率往往会下降,这表明需要进行改造。通过敏感性分析,本研究探讨了对建筑环境或后勤系统的投资如何能够提高资源供应率,从而帮助城市地区在面对地震挑战时具有更强的抗灾能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the role of transportation system in community seismic resilience

The swift recuperation of communities following natural hazards heavily relies on the efficiency of transportation systems, facilitating the timely delivery of vital resources and manpower to reconstruction sites. This paper delves into the pivotal role of transportation systems in aiding the recovery of built environments, proposing an evaluative metric that correlates transportation capacity with the speed of post-earthquake recovery. Focusing on optimizing urban population capacity in the aftermath of earthquakes, the study comprehensively examines the impact of pre-earthquake measures such as enhancing building or bridge seismic performance on post-earthquake urban population capacity. The methodology is demonstrated through an analysis of Beijing’s transportation system, elucidating how enhancements to transportation infrastructure fortify the resilience of built environments. Additionally, the concept of a resource supply rate is introduced to gauge the level of logistical support available after an earthquake. This rate tends to decrease when transportation damage is significant or when the demands for repairs overwhelm available resources, indicating a need for retrofitting. Through sensitivity analysis, this study explores how investments in the built environment or logistical systems can increase the resource supply rate, thereby contributing to more resilient urban areas in the face of seismic challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Automated knowledge graphs for complex systems (AutoGraCS): Applications to management of bridge networks Uncovering implicit Seismogenic associated regions towards promoting urban resilience Building Stock and Emission Models for Jakarta Key networks to create disaster resilient Smart Cities Mission: A case for remodeling India's Smart Cities Mission to include disaster resilience Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1