{"title":"缺陷能形式主义下的 Bi2Te3 热力学建模","authors":"Adetoye H. Adekoya, G. Jeffrey Snyder","doi":"10.1016/j.mtelec.2024.100109","DOIUrl":null,"url":null,"abstract":"<div><p>Bi<sub>2</sub>Te<sub>3</sub> is a promising thermoelectric material that is often touted as one of the best-performing low-temperature thermoelectric materials. As a result, it has been widely used commercially, both for clean energy generation and in cooling devices. Like many other thermoelectric materials, defects play a key role in the performance of Bi<sub>2</sub>Te<sub>3</sub>. As a result, numerous studies have attempted to experimentally and computationally map out the dominant defects in the phase, these include efforts to determine the dominant defect, estimate defect energies, and predict their concentration. The computer coupling of phase diagrams and thermochemistry (CALPHAD) is one of many tools under the auspices of the materials genome initiative (MGI) that enables the rapid design of new functional materials with improved properties. The Defect energy formalism (DEF) with a charged sublattice, an offshoot of the Compound energy formalism (CEF), provides a way to directly include first-principle defect energy calculations into CALPHAD descriptions of solid phases. The introduction of the charge sublattice enables the estimation of the free carrier concentrations in the phase. Here we apply the DEF to the Bi<sub>2</sub>Te<sub>3</sub> system, emphasizing the robustness of the DEF in describing meaningful endmembers and the elimination of fitting parameters. Unlike previous assessments using the Wagner–Schottky defect model, we include the description of the charged defects in our assessment. The DEF with a charged sublattice provides a good prediction of the non-stoichiometry of the phase when compared with experimental data and also predicts a thermodynamic defect concentration at low temperature that is physically reasonable.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000214/pdfft?md5=00431a08ddbaf489816d0452b157c7af&pid=1-s2.0-S2772949424000214-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic modeling of Bi2Te3 in the defect energy formalism\",\"authors\":\"Adetoye H. Adekoya, G. Jeffrey Snyder\",\"doi\":\"10.1016/j.mtelec.2024.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bi<sub>2</sub>Te<sub>3</sub> is a promising thermoelectric material that is often touted as one of the best-performing low-temperature thermoelectric materials. As a result, it has been widely used commercially, both for clean energy generation and in cooling devices. Like many other thermoelectric materials, defects play a key role in the performance of Bi<sub>2</sub>Te<sub>3</sub>. As a result, numerous studies have attempted to experimentally and computationally map out the dominant defects in the phase, these include efforts to determine the dominant defect, estimate defect energies, and predict their concentration. The computer coupling of phase diagrams and thermochemistry (CALPHAD) is one of many tools under the auspices of the materials genome initiative (MGI) that enables the rapid design of new functional materials with improved properties. The Defect energy formalism (DEF) with a charged sublattice, an offshoot of the Compound energy formalism (CEF), provides a way to directly include first-principle defect energy calculations into CALPHAD descriptions of solid phases. The introduction of the charge sublattice enables the estimation of the free carrier concentrations in the phase. Here we apply the DEF to the Bi<sub>2</sub>Te<sub>3</sub> system, emphasizing the robustness of the DEF in describing meaningful endmembers and the elimination of fitting parameters. Unlike previous assessments using the Wagner–Schottky defect model, we include the description of the charged defects in our assessment. The DEF with a charged sublattice provides a good prediction of the non-stoichiometry of the phase when compared with experimental data and also predicts a thermodynamic defect concentration at low temperature that is physically reasonable.</p></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772949424000214/pdfft?md5=00431a08ddbaf489816d0452b157c7af&pid=1-s2.0-S2772949424000214-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949424000214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949424000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermodynamic modeling of Bi2Te3 in the defect energy formalism
Bi2Te3 is a promising thermoelectric material that is often touted as one of the best-performing low-temperature thermoelectric materials. As a result, it has been widely used commercially, both for clean energy generation and in cooling devices. Like many other thermoelectric materials, defects play a key role in the performance of Bi2Te3. As a result, numerous studies have attempted to experimentally and computationally map out the dominant defects in the phase, these include efforts to determine the dominant defect, estimate defect energies, and predict their concentration. The computer coupling of phase diagrams and thermochemistry (CALPHAD) is one of many tools under the auspices of the materials genome initiative (MGI) that enables the rapid design of new functional materials with improved properties. The Defect energy formalism (DEF) with a charged sublattice, an offshoot of the Compound energy formalism (CEF), provides a way to directly include first-principle defect energy calculations into CALPHAD descriptions of solid phases. The introduction of the charge sublattice enables the estimation of the free carrier concentrations in the phase. Here we apply the DEF to the Bi2Te3 system, emphasizing the robustness of the DEF in describing meaningful endmembers and the elimination of fitting parameters. Unlike previous assessments using the Wagner–Schottky defect model, we include the description of the charged defects in our assessment. The DEF with a charged sublattice provides a good prediction of the non-stoichiometry of the phase when compared with experimental data and also predicts a thermodynamic defect concentration at low temperature that is physically reasonable.