床形诱发的低水位带的脆弱性:探索地下水位动态波动的影响

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2024-07-12 DOI:10.1029/2023wr036706
L. Wu, J. D. Gomez-Velez, L. Li, K. C. Carroll
{"title":"床形诱发的低水位带的脆弱性:探索地下水位动态波动的影响","authors":"L. Wu, J. D. Gomez-Velez, L. Li, K. C. Carroll","doi":"10.1029/2023wr036706","DOIUrl":null,"url":null,"abstract":"Hyporheic zones are commonly regarded as resilient and enduring interfaces between groundwater and surface water in river corridors. In particular, bedform-induced advective pumping hyporheic exchange (bedform-induced exchange) is often perceived as a relatively persistent mechanism in natural river systems driving water, solutes, and energy exchanges between the channel and its surrounding streambed sediments. Numerous studies have been based on this presumption. To evaluate the persistence of hyporheic zones under varying hydrologic conditions, we use a multi-physics framework to model advective pumping bedform-induced hyporheic exchange in response to a series of seasonal- and event-scale groundwater table fluctuation scenarios, which lead to episodic river-aquifer disconnections and reconnections. Our results suggest that hyporheic exchange is not as ubiquitous as generally assumed. Instead, the bedform-induced hyporheic exchange is restricted to a narrow range of conditions characterized by minor river-groundwater head differences, is intermittent, and can be easily obliterated by minor losing groundwater conditions. These findings shed light on the fragility of bedform-induced hyporheic exchange and have important implications for biogeochemical transformations along river corridors.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fragility of Bedform-Induced Hyporheic Zones: Exploring Impacts of Dynamic Groundwater Table Fluctuations\",\"authors\":\"L. Wu, J. D. Gomez-Velez, L. Li, K. C. Carroll\",\"doi\":\"10.1029/2023wr036706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyporheic zones are commonly regarded as resilient and enduring interfaces between groundwater and surface water in river corridors. In particular, bedform-induced advective pumping hyporheic exchange (bedform-induced exchange) is often perceived as a relatively persistent mechanism in natural river systems driving water, solutes, and energy exchanges between the channel and its surrounding streambed sediments. Numerous studies have been based on this presumption. To evaluate the persistence of hyporheic zones under varying hydrologic conditions, we use a multi-physics framework to model advective pumping bedform-induced hyporheic exchange in response to a series of seasonal- and event-scale groundwater table fluctuation scenarios, which lead to episodic river-aquifer disconnections and reconnections. Our results suggest that hyporheic exchange is not as ubiquitous as generally assumed. Instead, the bedform-induced hyporheic exchange is restricted to a narrow range of conditions characterized by minor river-groundwater head differences, is intermittent, and can be easily obliterated by minor losing groundwater conditions. These findings shed light on the fragility of bedform-induced hyporheic exchange and have important implications for biogeochemical transformations along river corridors.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036706\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036706","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

透水层通常被认为是河流走廊中地下水和地表水之间富有弹性和持久性的界面。特别是,在自然河流系统中,床面诱导的平流抽吸式透水层交换(床面诱导交换)通常被认为是一种相对持久的机制,它驱动着河道及其周围河床沉积物之间的水、溶质和能量交换。许多研究都是基于这一假设。为了评估在不同水文条件下地下蓄水区的持久性,我们采用多物理场框架,针对一系列季节性和偶发性地下水位波动情景,模拟了平流抽水床形引起的地下蓄水交换,这些波动导致河流与含水层的偶发性断开和重新连接。我们的研究结果表明,水汽交换并不像一般假设的那样普遍存在。相反,河床形态引起的水汽交换仅限于河水与地下水水头差异较小的狭小范围内,而且是间歇性的,很容易被地下水的轻微流失条件所破坏。这些发现揭示了床形诱导的水汽交换的脆弱性,对河流走廊沿线的生物地球化学转化具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Fragility of Bedform-Induced Hyporheic Zones: Exploring Impacts of Dynamic Groundwater Table Fluctuations
Hyporheic zones are commonly regarded as resilient and enduring interfaces between groundwater and surface water in river corridors. In particular, bedform-induced advective pumping hyporheic exchange (bedform-induced exchange) is often perceived as a relatively persistent mechanism in natural river systems driving water, solutes, and energy exchanges between the channel and its surrounding streambed sediments. Numerous studies have been based on this presumption. To evaluate the persistence of hyporheic zones under varying hydrologic conditions, we use a multi-physics framework to model advective pumping bedform-induced hyporheic exchange in response to a series of seasonal- and event-scale groundwater table fluctuation scenarios, which lead to episodic river-aquifer disconnections and reconnections. Our results suggest that hyporheic exchange is not as ubiquitous as generally assumed. Instead, the bedform-induced hyporheic exchange is restricted to a narrow range of conditions characterized by minor river-groundwater head differences, is intermittent, and can be easily obliterated by minor losing groundwater conditions. These findings shed light on the fragility of bedform-induced hyporheic exchange and have important implications for biogeochemical transformations along river corridors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
A Novel Hybrid Deep Learning Framework for Evaluating Field Evapotranspiration Considering the Impact of Soil Salinity Gradient Information Enhanced Image Segmentation and Automatic In Situ Contact Angle Measurement Applied to Images of Multiphase Flow in Porous Media Comprehensive Flow Turbulence Metrics to Improve Bar Rack Guidance for Downstream Migrating Fish Seawater Intrusion Inhibits Nitrate Removal in Tidal Marsh Aquifers Dynamic Pricing Framework for Water Demand Management Using Advanced Metering Infrastructure Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1