{"title":"用于尖峰神经网络直接输入编码的二级阶 RC 传感器神经元电路","authors":"Simiao Yang, Deli Li, Jiuchao Feng, Binchen Gong, Qing Song, Yue Wang, Zhen Yang, Yonghua Chen, Qi Chen, Wei Huang","doi":"10.1002/aelm.202400075","DOIUrl":null,"url":null,"abstract":"<p>In spiking neural networks (SNNs), artificial sensor neurons are crucial for converting real-world analog information into encoded spikes. However, existing SNNs face challenges due to the inefficient implementation of input sensor neurons. Here, this study proposes an SNN-compatible spike mode sensor, designed to directly convert analog current signals into real-time encoded spikes, feeding the SNN concurrently. The input sensor neuron is realized using a stable neuron circuit employing a threshold switching (TS) memristor and secondary order RC block. This design enables time delay-free spike firing, operates at low voltage, and offers a wide signal sensing range. Furthermore, this study presents an expression delineating the relationship between the pulse emission properties of the circuit and the parameters of its components, laying the basis for circuit components design and development. Analytical analysis confirms the sensor's efficacy in implementing rate-based and time-to-first spike encoding schemes. Integrating the sensor into SNNs as the input layer for image training and recognition tasks yields an impressive accuracy of 87.58% on the MNIST dataset, showcasing its applicability as a crucial interface between the physical world and the SNN framework.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400075","citationCount":"0","resultStr":"{\"title\":\"Secondary Order RC Sensor Neuron Circuit for Direct Input Encoding in Spiking Neural Network\",\"authors\":\"Simiao Yang, Deli Li, Jiuchao Feng, Binchen Gong, Qing Song, Yue Wang, Zhen Yang, Yonghua Chen, Qi Chen, Wei Huang\",\"doi\":\"10.1002/aelm.202400075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In spiking neural networks (SNNs), artificial sensor neurons are crucial for converting real-world analog information into encoded spikes. However, existing SNNs face challenges due to the inefficient implementation of input sensor neurons. Here, this study proposes an SNN-compatible spike mode sensor, designed to directly convert analog current signals into real-time encoded spikes, feeding the SNN concurrently. The input sensor neuron is realized using a stable neuron circuit employing a threshold switching (TS) memristor and secondary order RC block. This design enables time delay-free spike firing, operates at low voltage, and offers a wide signal sensing range. Furthermore, this study presents an expression delineating the relationship between the pulse emission properties of the circuit and the parameters of its components, laying the basis for circuit components design and development. Analytical analysis confirms the sensor's efficacy in implementing rate-based and time-to-first spike encoding schemes. Integrating the sensor into SNNs as the input layer for image training and recognition tasks yields an impressive accuracy of 87.58% on the MNIST dataset, showcasing its applicability as a crucial interface between the physical world and the SNN framework.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400075\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400075","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Secondary Order RC Sensor Neuron Circuit for Direct Input Encoding in Spiking Neural Network
In spiking neural networks (SNNs), artificial sensor neurons are crucial for converting real-world analog information into encoded spikes. However, existing SNNs face challenges due to the inefficient implementation of input sensor neurons. Here, this study proposes an SNN-compatible spike mode sensor, designed to directly convert analog current signals into real-time encoded spikes, feeding the SNN concurrently. The input sensor neuron is realized using a stable neuron circuit employing a threshold switching (TS) memristor and secondary order RC block. This design enables time delay-free spike firing, operates at low voltage, and offers a wide signal sensing range. Furthermore, this study presents an expression delineating the relationship between the pulse emission properties of the circuit and the parameters of its components, laying the basis for circuit components design and development. Analytical analysis confirms the sensor's efficacy in implementing rate-based and time-to-first spike encoding schemes. Integrating the sensor into SNNs as the input layer for image training and recognition tasks yields an impressive accuracy of 87.58% on the MNIST dataset, showcasing its applicability as a crucial interface between the physical world and the SNN framework.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.