全谱色散关系保全逐部求和算子

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-07-11 DOI:10.1137/23m1586471
Christopher Williams, Kenneth Duru
{"title":"全谱色散关系保全逐部求和算子","authors":"Christopher Williams, Kenneth Duru","doi":"10.1137/23m1586471","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1565-1588, August 2024. <br/> Abstract. The dispersion error is currently the dominant error for computed solutions of wave propagation problems with high-frequency components. In this paper, we define and give explicit examples of interior [math]-dispersion-relation-preserving schemes, of interior order of accuracy 4, 5, 6, and 7, with a complete methodology to construct them. These are dual-pair finite-difference schemes for systems of hyperbolic partial differential equations which satisfy the summation-by-parts principle and preserve the dispersion relation of the continuous problem uniformly to an [math] error tolerance for their interior stencil. We give a general framework to design provably stable finite-difference operators whose interior stencil preserves the dispersion relation for hyperbolic systems such as the elastic wave equation. The operators we derive here can resolve the highest frequency ([math]-mode) present on any equidistant grid at a tolerance of [math] maximum error within the interior stencil, with minimal extra stencil points. As standard finite-difference schemes have a [math] dispersion error for high-frequency components, fine meshes must be used to resolve these components. Our derived schemes may compute solutions with the same accuracy as traditional schemes on far coarser meshes, which in high dimensions significantly improves the computational cost.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-Spectrum Dispersion Relation Preserving Summation-by-Parts Operators\",\"authors\":\"Christopher Williams, Kenneth Duru\",\"doi\":\"10.1137/23m1586471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1565-1588, August 2024. <br/> Abstract. The dispersion error is currently the dominant error for computed solutions of wave propagation problems with high-frequency components. In this paper, we define and give explicit examples of interior [math]-dispersion-relation-preserving schemes, of interior order of accuracy 4, 5, 6, and 7, with a complete methodology to construct them. These are dual-pair finite-difference schemes for systems of hyperbolic partial differential equations which satisfy the summation-by-parts principle and preserve the dispersion relation of the continuous problem uniformly to an [math] error tolerance for their interior stencil. We give a general framework to design provably stable finite-difference operators whose interior stencil preserves the dispersion relation for hyperbolic systems such as the elastic wave equation. The operators we derive here can resolve the highest frequency ([math]-mode) present on any equidistant grid at a tolerance of [math] maximum error within the interior stencil, with minimal extra stencil points. As standard finite-difference schemes have a [math] dispersion error for high-frequency components, fine meshes must be used to resolve these components. Our derived schemes may compute solutions with the same accuracy as traditional schemes on far coarser meshes, which in high dimensions significantly improves the computational cost.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1586471\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1586471","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 4 期第 1565-1588 页,2024 年 8 月。 摘要对于具有高频成分的波传播问题,色散误差是目前计算解的主要误差。本文定义并举例说明了精度为 4、5、6 和 7 的内部阶[math]-色散相关保留方案,并给出了构建这些方案的完整方法。这些都是双曲偏微分方程系统的双对有限差分方案,它们满足逐段求和原则,并在其内部模板的[数学]误差容限内均匀地保留连续问题的离散关系。我们给出了一个通用框架,用于设计可证明稳定的有限差分算子,其内部模板保留了弹性波方程等双曲系统的分散关系。我们在此推导出的算子能以内部模版内[数学]最大误差的容差解决任何等距网格上出现的最高频率([数学]模式),而只需最小的额外模版点。由于标准有限差分方案对高频成分有[数学]分散误差,因此必须使用细网格来解析这些成分。我们推导出的方案可以在更粗的网格上计算出与传统方案相同精度的解,这在高维度上大大提高了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full-Spectrum Dispersion Relation Preserving Summation-by-Parts Operators
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1565-1588, August 2024.
Abstract. The dispersion error is currently the dominant error for computed solutions of wave propagation problems with high-frequency components. In this paper, we define and give explicit examples of interior [math]-dispersion-relation-preserving schemes, of interior order of accuracy 4, 5, 6, and 7, with a complete methodology to construct them. These are dual-pair finite-difference schemes for systems of hyperbolic partial differential equations which satisfy the summation-by-parts principle and preserve the dispersion relation of the continuous problem uniformly to an [math] error tolerance for their interior stencil. We give a general framework to design provably stable finite-difference operators whose interior stencil preserves the dispersion relation for hyperbolic systems such as the elastic wave equation. The operators we derive here can resolve the highest frequency ([math]-mode) present on any equidistant grid at a tolerance of [math] maximum error within the interior stencil, with minimal extra stencil points. As standard finite-difference schemes have a [math] dispersion error for high-frequency components, fine meshes must be used to resolve these components. Our derived schemes may compute solutions with the same accuracy as traditional schemes on far coarser meshes, which in high dimensions significantly improves the computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes A Domain Decomposition Method for Stochastic Evolution Equations New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1