Tingting Zhu, Hongri Ruan, Tiantian Wang, Yingchao Guo, Yun Liu
{"title":"高纤维食物对患有或未患有酶诱发关节炎模型的兔子的关节和肝脏健康均有负面影响。","authors":"Tingting Zhu, Hongri Ruan, Tiantian Wang, Yingchao Guo, Yun Liu","doi":"10.1016/j.tvjl.2024.106197","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoarthritis (OA) is a common arthritis types in animals that causes persistent pain and reduces quality of life. Although a high-fat diet (HFD) is widely believed to induce obesity and have adverse effects on the body, the connection between HFD and joint health is not well understood. Therefore, in this study, 32 healthy male New Zealand rabbits were randomly divided into four groups: healthy rabbits fed a standard diet (NDG, n=8) or an HFD (HDG, n=8), rabbits fed a standard diet (OAG, n=8) and an HFD (HOG, n=8), and arthritis was induced by intra-articular enzyme injection. After 12 weeks of HFD feeding, articular cartilage, synovium, and subchondral bone were isolated and collected. Joint tissue damage was evaluated using histopathological and imaging tests. The results showed that there was no significant difference in body weight between rabbits fed a normal diet and those fed an HFD. However, the HFD led to an increase in joint injuries in both induced and non-induced arthritis rabbits. Specifically, the HFD induced lipid metabolism disorders and liver damage in vivo, significantly elevating the levels of serum inflammatory cytokines and bone metabolism markers. Moreover, HFD exacerbated articular cartilage damage in the joints and increased the accumulation of inflammatory cells in synovial tissue, resulting in a notable increase in synovial macrophages and inflammatory cytokines. Additionally, HFD accelerated the bone resorption process in subchondral bone, leading to the destruction of bone mass and subchondral bone microstructure. In summary, the results of this study indicate that an HFD can cause histological damage to the articular cartilage, synovium, and subchondral bone in rabbits, exacerbating arthritis in pre-existing joint damage. Notably, weight is not the primary factor in this effect.</p></div>","PeriodicalId":23505,"journal":{"name":"Veterinary journal","volume":"306 ","pages":"Article 106197"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An HFD negatively influences both joint and liver health in rabbits with and without an enzymatically-induced model of arthritis\",\"authors\":\"Tingting Zhu, Hongri Ruan, Tiantian Wang, Yingchao Guo, Yun Liu\",\"doi\":\"10.1016/j.tvjl.2024.106197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osteoarthritis (OA) is a common arthritis types in animals that causes persistent pain and reduces quality of life. Although a high-fat diet (HFD) is widely believed to induce obesity and have adverse effects on the body, the connection between HFD and joint health is not well understood. Therefore, in this study, 32 healthy male New Zealand rabbits were randomly divided into four groups: healthy rabbits fed a standard diet (NDG, n=8) or an HFD (HDG, n=8), rabbits fed a standard diet (OAG, n=8) and an HFD (HOG, n=8), and arthritis was induced by intra-articular enzyme injection. After 12 weeks of HFD feeding, articular cartilage, synovium, and subchondral bone were isolated and collected. Joint tissue damage was evaluated using histopathological and imaging tests. The results showed that there was no significant difference in body weight between rabbits fed a normal diet and those fed an HFD. However, the HFD led to an increase in joint injuries in both induced and non-induced arthritis rabbits. Specifically, the HFD induced lipid metabolism disorders and liver damage in vivo, significantly elevating the levels of serum inflammatory cytokines and bone metabolism markers. Moreover, HFD exacerbated articular cartilage damage in the joints and increased the accumulation of inflammatory cells in synovial tissue, resulting in a notable increase in synovial macrophages and inflammatory cytokines. Additionally, HFD accelerated the bone resorption process in subchondral bone, leading to the destruction of bone mass and subchondral bone microstructure. In summary, the results of this study indicate that an HFD can cause histological damage to the articular cartilage, synovium, and subchondral bone in rabbits, exacerbating arthritis in pre-existing joint damage. Notably, weight is not the primary factor in this effect.</p></div>\",\"PeriodicalId\":23505,\"journal\":{\"name\":\"Veterinary journal\",\"volume\":\"306 \",\"pages\":\"Article 106197\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090023324001369\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090023324001369","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
An HFD negatively influences both joint and liver health in rabbits with and without an enzymatically-induced model of arthritis
Osteoarthritis (OA) is a common arthritis types in animals that causes persistent pain and reduces quality of life. Although a high-fat diet (HFD) is widely believed to induce obesity and have adverse effects on the body, the connection between HFD and joint health is not well understood. Therefore, in this study, 32 healthy male New Zealand rabbits were randomly divided into four groups: healthy rabbits fed a standard diet (NDG, n=8) or an HFD (HDG, n=8), rabbits fed a standard diet (OAG, n=8) and an HFD (HOG, n=8), and arthritis was induced by intra-articular enzyme injection. After 12 weeks of HFD feeding, articular cartilage, synovium, and subchondral bone were isolated and collected. Joint tissue damage was evaluated using histopathological and imaging tests. The results showed that there was no significant difference in body weight between rabbits fed a normal diet and those fed an HFD. However, the HFD led to an increase in joint injuries in both induced and non-induced arthritis rabbits. Specifically, the HFD induced lipid metabolism disorders and liver damage in vivo, significantly elevating the levels of serum inflammatory cytokines and bone metabolism markers. Moreover, HFD exacerbated articular cartilage damage in the joints and increased the accumulation of inflammatory cells in synovial tissue, resulting in a notable increase in synovial macrophages and inflammatory cytokines. Additionally, HFD accelerated the bone resorption process in subchondral bone, leading to the destruction of bone mass and subchondral bone microstructure. In summary, the results of this study indicate that an HFD can cause histological damage to the articular cartilage, synovium, and subchondral bone in rabbits, exacerbating arthritis in pre-existing joint damage. Notably, weight is not the primary factor in this effect.
期刊介绍:
The Veterinary Journal (established 1875) publishes worldwide contributions on all aspects of veterinary science and its related subjects. It provides regular book reviews and a short communications section. The journal regularly commissions topical reviews and commentaries on features of major importance. Research areas include infectious diseases, applied biochemistry, parasitology, endocrinology, microbiology, immunology, pathology, pharmacology, physiology, molecular biology, immunogenetics, surgery, ophthalmology, dermatology and oncology.