带控制障碍功能的未知系统控制中基于学习的规定时间安全性

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-06-20 DOI:10.1109/LCSYS.2024.3417175
Tzu-Yuan Huang;Sihua Zhang;Xiaobing Dai;Alexandre Capone;Velimir Todorovski;Stefan Sosnowski;Sandra Hirche
{"title":"带控制障碍功能的未知系统控制中基于学习的规定时间安全性","authors":"Tzu-Yuan Huang;Sihua Zhang;Xiaobing Dai;Alexandre Capone;Velimir Todorovski;Stefan Sosnowski;Sandra Hirche","doi":"10.1109/LCSYS.2024.3417175","DOIUrl":null,"url":null,"abstract":"In many control system applications, state constraint satisfaction needs to be guaranteed within a prescribed time. While this issue has been partially addressed for systems with known dynamics, it remains largely unaddressed for systems with unknown dynamics. In this letter, we propose a Gaussian process-based time-varying control method that leverages backstepping and control barrier functions to achieve safety requirements within prescribed time windows for control affine systems. It can be used to keep a system within a safe region or to make it return to a safe region within a limited time window. These properties are cemented by rigorous theoretical results. The effectiveness of the proposed controller is demonstrated in a simulation of a robotic manipulator.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Based Prescribed-Time Safety for Control of Unknown Systems With Control Barrier Functions\",\"authors\":\"Tzu-Yuan Huang;Sihua Zhang;Xiaobing Dai;Alexandre Capone;Velimir Todorovski;Stefan Sosnowski;Sandra Hirche\",\"doi\":\"10.1109/LCSYS.2024.3417175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many control system applications, state constraint satisfaction needs to be guaranteed within a prescribed time. While this issue has been partially addressed for systems with known dynamics, it remains largely unaddressed for systems with unknown dynamics. In this letter, we propose a Gaussian process-based time-varying control method that leverages backstepping and control barrier functions to achieve safety requirements within prescribed time windows for control affine systems. It can be used to keep a system within a safe region or to make it return to a safe region within a limited time window. These properties are cemented by rigorous theoretical results. The effectiveness of the proposed controller is demonstrated in a simulation of a robotic manipulator.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10565849/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10565849/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在许多控制系统应用中,需要在规定时间内保证满足状态约束。虽然已知动力学系统已部分解决了这一问题,但对于未知动力学系统,这一问题在很大程度上仍未得到解决。在这封信中,我们提出了一种基于高斯过程的时变控制方法,该方法利用反向步进和控制障碍函数,在规定的时间窗口内实现仿射系统控制的安全要求。它可用于将系统保持在安全区域内,或使其在有限的时间窗口内返回安全区域。严格的理论结果巩固了这些特性。在一个机器人机械手的仿真中,演示了所提出的控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning-Based Prescribed-Time Safety for Control of Unknown Systems With Control Barrier Functions
In many control system applications, state constraint satisfaction needs to be guaranteed within a prescribed time. While this issue has been partially addressed for systems with known dynamics, it remains largely unaddressed for systems with unknown dynamics. In this letter, we propose a Gaussian process-based time-varying control method that leverages backstepping and control barrier functions to achieve safety requirements within prescribed time windows for control affine systems. It can be used to keep a system within a safe region or to make it return to a safe region within a limited time window. These properties are cemented by rigorous theoretical results. The effectiveness of the proposed controller is demonstrated in a simulation of a robotic manipulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1