通过流式重氮化和吡啶酮的部分还原实现 ABBV-992 的立体选择性合成

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2024-07-12 DOI:10.1021/acs.oprd.4c00077
Patrick B. Brady, Kaid C. Harper, Bryan K. Sorensen, Stephen N. Greszler, Chunqiu Lai, Alan S. Florjancic, Gang Zhao, Bhadra H. Shelat, Gregory E. Storer, Rodger F. Henry, T. Matthew Hansen
{"title":"通过流式重氮化和吡啶酮的部分还原实现 ABBV-992 的立体选择性合成","authors":"Patrick B. Brady, Kaid C. Harper, Bryan K. Sorensen, Stephen N. Greszler, Chunqiu Lai, Alan S. Florjancic, Gang Zhao, Bhadra H. Shelat, Gregory E. Storer, Rodger F. Henry, T. Matthew Hansen","doi":"10.1021/acs.oprd.4c00077","DOIUrl":null,"url":null,"abstract":"Bruton’s tyrosine kinase (BTK) is involved in B-cell receptor signaling and has been clinically validated as a target by small molecule inhibition for the treatment of a variety of cancers. ABBV-992 (<b>1</b>) was identified as a novel, potent, selective BTK inhibitor and advanced to Phase I clinical trials. An enantioselective synthesis of <b>1</b> was developed and scaled to provide 63 g for preclinical characterization. The route features a diazotization enabled by flow chemistry, a novel, selective partial reduction of a pyridone, a stereoselective Ellman imine reduction, and an improved acrylamide formation using 3-chloropropionyl chloride in a masked acrylate strategy.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"56 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereoselective Synthesis of ABBV-992 Enabled by a Flow Diazotization and a Partial Reduction of a Pyridone\",\"authors\":\"Patrick B. Brady, Kaid C. Harper, Bryan K. Sorensen, Stephen N. Greszler, Chunqiu Lai, Alan S. Florjancic, Gang Zhao, Bhadra H. Shelat, Gregory E. Storer, Rodger F. Henry, T. Matthew Hansen\",\"doi\":\"10.1021/acs.oprd.4c00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bruton’s tyrosine kinase (BTK) is involved in B-cell receptor signaling and has been clinically validated as a target by small molecule inhibition for the treatment of a variety of cancers. ABBV-992 (<b>1</b>) was identified as a novel, potent, selective BTK inhibitor and advanced to Phase I clinical trials. An enantioselective synthesis of <b>1</b> was developed and scaled to provide 63 g for preclinical characterization. The route features a diazotization enabled by flow chemistry, a novel, selective partial reduction of a pyridone, a stereoselective Ellman imine reduction, and an improved acrylamide formation using 3-chloropropionyl chloride in a masked acrylate strategy.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.4c00077\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00077","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

布鲁顿酪氨酸激酶(BTK)参与 B 细胞受体信号传导,已被临床验证为治疗多种癌症的小分子抑制剂靶点。ABBV-992 (1) 是一种新型、强效、选择性 BTK 抑制剂,已进入 I 期临床试验阶段。我们开发了 1 的对映体选择性合成方法,并将其放大到 63 克,用于临床前表征。该路线的特点是通过流动化学进行重氮化,对吡啶酮进行新颖、选择性的部分还原,立体选择性的埃尔曼亚胺还原,以及在掩蔽丙烯酸酯策略中使用 3-氯丙酰氯改进丙烯酰胺的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stereoselective Synthesis of ABBV-992 Enabled by a Flow Diazotization and a Partial Reduction of a Pyridone
Bruton’s tyrosine kinase (BTK) is involved in B-cell receptor signaling and has been clinically validated as a target by small molecule inhibition for the treatment of a variety of cancers. ABBV-992 (1) was identified as a novel, potent, selective BTK inhibitor and advanced to Phase I clinical trials. An enantioselective synthesis of 1 was developed and scaled to provide 63 g for preclinical characterization. The route features a diazotization enabled by flow chemistry, a novel, selective partial reduction of a pyridone, a stereoselective Ellman imine reduction, and an improved acrylamide formation using 3-chloropropionyl chloride in a masked acrylate strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Screening Platform for Immobilized Biocatalysts Utilizing Miniature Rotating Bed Reactors Optimization and Scale-Up Synthesis of a Lappaconitine Alkaloid Derivative, QG3030, as a Novel Osteoanabolic Agent Process Development to Synthesize SGD-11275 Utilizing a Pd-Catalyzed Acetamide Arylation and Gallium-Mediated Friedel–Crafts Acylation Atom-Economical and Environmentally Friendly Bts-Based Purine PNA Monomers without Base-Protecting Groups Development of a Scalable Method for the Synthesis of Ethoxy(pentafluoro)cyclotriphosphazene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1