{"title":"复杂活性物质生命系统的恒温动力学理论模型十年。","authors":"Carlo Bianca","doi":"10.1016/j.plrev.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, the thermostatted kinetic theory has been proposed as a general paradigm for the modeling of complex systems of the active matter and, in particular, in biology. Homogeneous and inhomogeneous frameworks of the thermostatted kinetic theory have been employed for modeling phenomena that are the result of interactions among the elements, called active particles, composing the system. Functional subsystems contain heterogeneous active particles that are able to perform the same task, called activity. Active matter living systems usually operate out-of-equilibrium; accordingly, a mathematical thermostat is introduced in order to regulate the fluctuations of the activity of particles. The time evolution of the functional subsystems is obtained by introducing the conservative and the nonconservative interactions which represent activity-transition, natural birth/death, induced proliferation/destruction, and mutation of the active particles. This review paper is divided in two parts: In the first part the review deals with the mathematical frameworks of the thermostatted kinetic theory that can be found in the literature of the last decade and a unified approach is proposed; the second part of the review is devoted to the specific mathematical models derived within the thermostatted kinetic theory presented in the last decade for complex biological systems, such as wound healing diseases, the recognition process and the learning dynamics of the human immune system, the hiding-learning dynamics and the immunoediting process occurring during the cancer-immune system competition. Future research perspectives are discussed from the theoretical and application viewpoints, which suggest the important interplay among the different scholars of the applied sciences and the desire of a multidisciplinary approach or rather a theory for the modeling of every active matter system.</p></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"50 ","pages":"Pages 72-97"},"PeriodicalIF":13.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A decade of thermostatted kinetic theory models for complex active matter living systems\",\"authors\":\"Carlo Bianca\",\"doi\":\"10.1016/j.plrev.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decade, the thermostatted kinetic theory has been proposed as a general paradigm for the modeling of complex systems of the active matter and, in particular, in biology. Homogeneous and inhomogeneous frameworks of the thermostatted kinetic theory have been employed for modeling phenomena that are the result of interactions among the elements, called active particles, composing the system. Functional subsystems contain heterogeneous active particles that are able to perform the same task, called activity. Active matter living systems usually operate out-of-equilibrium; accordingly, a mathematical thermostat is introduced in order to regulate the fluctuations of the activity of particles. The time evolution of the functional subsystems is obtained by introducing the conservative and the nonconservative interactions which represent activity-transition, natural birth/death, induced proliferation/destruction, and mutation of the active particles. This review paper is divided in two parts: In the first part the review deals with the mathematical frameworks of the thermostatted kinetic theory that can be found in the literature of the last decade and a unified approach is proposed; the second part of the review is devoted to the specific mathematical models derived within the thermostatted kinetic theory presented in the last decade for complex biological systems, such as wound healing diseases, the recognition process and the learning dynamics of the human immune system, the hiding-learning dynamics and the immunoediting process occurring during the cancer-immune system competition. Future research perspectives are discussed from the theoretical and application viewpoints, which suggest the important interplay among the different scholars of the applied sciences and the desire of a multidisciplinary approach or rather a theory for the modeling of every active matter system.</p></div>\",\"PeriodicalId\":403,\"journal\":{\"name\":\"Physics of Life Reviews\",\"volume\":\"50 \",\"pages\":\"Pages 72-97\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Life Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571064524000824\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064524000824","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A decade of thermostatted kinetic theory models for complex active matter living systems
In the last decade, the thermostatted kinetic theory has been proposed as a general paradigm for the modeling of complex systems of the active matter and, in particular, in biology. Homogeneous and inhomogeneous frameworks of the thermostatted kinetic theory have been employed for modeling phenomena that are the result of interactions among the elements, called active particles, composing the system. Functional subsystems contain heterogeneous active particles that are able to perform the same task, called activity. Active matter living systems usually operate out-of-equilibrium; accordingly, a mathematical thermostat is introduced in order to regulate the fluctuations of the activity of particles. The time evolution of the functional subsystems is obtained by introducing the conservative and the nonconservative interactions which represent activity-transition, natural birth/death, induced proliferation/destruction, and mutation of the active particles. This review paper is divided in two parts: In the first part the review deals with the mathematical frameworks of the thermostatted kinetic theory that can be found in the literature of the last decade and a unified approach is proposed; the second part of the review is devoted to the specific mathematical models derived within the thermostatted kinetic theory presented in the last decade for complex biological systems, such as wound healing diseases, the recognition process and the learning dynamics of the human immune system, the hiding-learning dynamics and the immunoediting process occurring during the cancer-immune system competition. Future research perspectives are discussed from the theoretical and application viewpoints, which suggest the important interplay among the different scholars of the applied sciences and the desire of a multidisciplinary approach or rather a theory for the modeling of every active matter system.
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.