{"title":"从无机废物中提取用于生产土工聚合物的硅酸铝来源综述:碳氢化合物废物处理的可持续方法","authors":"Amalina Hanani Ismail , Andri Kusbiantoro , Yuyun Tajunnisa , Januarti Jaya Ekaputri , Irwanda Laory","doi":"10.1016/j.clema.2024.100259","DOIUrl":null,"url":null,"abstract":"<div><p>Concrete is a widely used construction material with notable environmental challenges. One primary concern is its reliance on nonrenewable resources. Additionally, the production of cement, its key ingredient, results in significant carbon emissions. To address these issues, the industry is increasingly considering geopolymer. This alternative stands out due to their sustainable nature and innovative use. Geopolymer effectively consume inorganic waste by utilizing it as one of its ingredients. This approach reduces the need for traditional waste disposal, as geopolymer is also applicable as construction materials. It also confronts the challenges of limited landfill space and the increasing disposal costs. However, there is a challenge in using raw, untreated waste for geopolymer production. These materials often require further processing to ensure their compatibility. This review explores into the potential of using various inorganic waste like fly ash, slag, rice husk ash, palm oil ashes as source material for geopolymer synthesis. Additionally, this paper also explores the potential of petroleum sludge, as one of the least utilized waste materials. Examination of its treatment, disposal techniques, and impact on the geopolymer matrix were reviewed and included in this paper. Overall, the findings highlight the benefits of leveraging waste materials. Another significant advantage is the availability of various source materials for geopolymer production, many of which are sourced from industrial, agricultural, and municipal waste streams, thereby promoting waste recycling, and reducing environmental impacts.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100259"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000431/pdfft?md5=aa8bd84b41bb1d66d0f4e8f90467239b&pid=1-s2.0-S2772397624000431-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of aluminosilicate sources from inorganic waste for geopolymer production: Sustainable approach for hydrocarbon waste disposal\",\"authors\":\"Amalina Hanani Ismail , Andri Kusbiantoro , Yuyun Tajunnisa , Januarti Jaya Ekaputri , Irwanda Laory\",\"doi\":\"10.1016/j.clema.2024.100259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Concrete is a widely used construction material with notable environmental challenges. One primary concern is its reliance on nonrenewable resources. Additionally, the production of cement, its key ingredient, results in significant carbon emissions. To address these issues, the industry is increasingly considering geopolymer. This alternative stands out due to their sustainable nature and innovative use. Geopolymer effectively consume inorganic waste by utilizing it as one of its ingredients. This approach reduces the need for traditional waste disposal, as geopolymer is also applicable as construction materials. It also confronts the challenges of limited landfill space and the increasing disposal costs. However, there is a challenge in using raw, untreated waste for geopolymer production. These materials often require further processing to ensure their compatibility. This review explores into the potential of using various inorganic waste like fly ash, slag, rice husk ash, palm oil ashes as source material for geopolymer synthesis. Additionally, this paper also explores the potential of petroleum sludge, as one of the least utilized waste materials. Examination of its treatment, disposal techniques, and impact on the geopolymer matrix were reviewed and included in this paper. Overall, the findings highlight the benefits of leveraging waste materials. Another significant advantage is the availability of various source materials for geopolymer production, many of which are sourced from industrial, agricultural, and municipal waste streams, thereby promoting waste recycling, and reducing environmental impacts.</p></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"13 \",\"pages\":\"Article 100259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772397624000431/pdfft?md5=aa8bd84b41bb1d66d0f4e8f90467239b&pid=1-s2.0-S2772397624000431-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397624000431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review of aluminosilicate sources from inorganic waste for geopolymer production: Sustainable approach for hydrocarbon waste disposal
Concrete is a widely used construction material with notable environmental challenges. One primary concern is its reliance on nonrenewable resources. Additionally, the production of cement, its key ingredient, results in significant carbon emissions. To address these issues, the industry is increasingly considering geopolymer. This alternative stands out due to their sustainable nature and innovative use. Geopolymer effectively consume inorganic waste by utilizing it as one of its ingredients. This approach reduces the need for traditional waste disposal, as geopolymer is also applicable as construction materials. It also confronts the challenges of limited landfill space and the increasing disposal costs. However, there is a challenge in using raw, untreated waste for geopolymer production. These materials often require further processing to ensure their compatibility. This review explores into the potential of using various inorganic waste like fly ash, slag, rice husk ash, palm oil ashes as source material for geopolymer synthesis. Additionally, this paper also explores the potential of petroleum sludge, as one of the least utilized waste materials. Examination of its treatment, disposal techniques, and impact on the geopolymer matrix were reviewed and included in this paper. Overall, the findings highlight the benefits of leveraging waste materials. Another significant advantage is the availability of various source materials for geopolymer production, many of which are sourced from industrial, agricultural, and municipal waste streams, thereby promoting waste recycling, and reducing environmental impacts.